291 lines
9.2 KiB
OpenSCAD
291 lines
9.2 KiB
OpenSCAD
//===========================================
|
|
// Public Domain Epi- and Hypo- trochoids in OpenSCAD
|
|
// version 1.0
|
|
// by Matt Moses, 2011, mmoses152@gmail.com
|
|
// http://www.thingiverse.com/thing:8067
|
|
//
|
|
// This file is public domain. Use it for any purpose, including commercial
|
|
// applications. Attribution would be nice, but is not required. There is
|
|
// no warranty of any kind, including its correctness, usefulness, or safety.
|
|
//
|
|
// An EPITROCHOID is a curve traced by a point
|
|
// fixed at a distance "d"
|
|
// to the center of a circle of radius "r"
|
|
// as the circle rolls
|
|
// outside another circle of radius "R".
|
|
//
|
|
// An HYPOTROCHOID is a curve traced by a point
|
|
// fixed at a distance "d"
|
|
// to the center of a circle of radius "r"
|
|
// as the circle rolls
|
|
// inside another circle of radius "R".
|
|
//
|
|
// An EPICYCLOID is an epitrochoid with d = r.
|
|
//
|
|
// An HYPOCYCLOID is an hypotrochoid with d = r.
|
|
//
|
|
// See http://en.wikipedia.org/wiki/Epitrochoid
|
|
// and http://en.wikipedia.org/wiki/Hypotrochoid
|
|
//
|
|
// Beware the polar forms of the equations on Wikipedia...
|
|
// They are correct, but theta is measured to the center of the small disk!!
|
|
//===========================================
|
|
|
|
// There are several different methods for extruding. The best are probably
|
|
// the ones using linear extrude.
|
|
|
|
|
|
//===========================================
|
|
// Demo - draws one of each, plus some little wheels and sticks.
|
|
//
|
|
// Fun stuff to try:
|
|
// Animate, try FPS = 5 and Steps = 200
|
|
// R = 2, r = 1, d = 0.2
|
|
// R = 4, r = 1, d = 1
|
|
// R = 2, r = 1, d = 0.5
|
|
//
|
|
// What happens when you make d > r ??
|
|
// What happens when d < 0 ??
|
|
// What happens when r < 0 ??
|
|
//
|
|
//===========================================
|
|
|
|
$fn = 30;
|
|
|
|
thickness = 2;
|
|
R = 4;
|
|
r = 1;
|
|
d = 1;
|
|
n = 60; // number of wedge segments
|
|
|
|
alpha = 360*$t;
|
|
|
|
color([0, 0, 1])
|
|
translate([0, 0, -0.5])
|
|
cylinder(h = 1, r= R, center = true);
|
|
|
|
color([0, 1, 0])
|
|
epitrochoid(R,r,d,n,thickness);
|
|
|
|
color([1, 0, 0])
|
|
translate([ (R+r)*cos(alpha) , (R+r)*sin(alpha), -0.5]) {
|
|
rotate([0, 0, alpha + R/r*alpha]) {
|
|
cylinder(h = 1, r = r, center = true);
|
|
translate([-d, 0, 1.5]) {
|
|
cylinder(h = 2.2, r = 0.1, center = true);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
translate([2*(abs(R) + abs(r) + abs(d)), 0, 0]){
|
|
color([0, 0, 1])
|
|
translate([0, 0, -0.5])
|
|
difference() {
|
|
cylinder(h = 1, r = 1.1*R, center = true);
|
|
cylinder(h = 1.1, r= R, center = true);
|
|
}
|
|
|
|
color([0, 1, 0])
|
|
hypotrochoid(R,r,d,n,thickness);
|
|
|
|
color([1, 0, 0])
|
|
translate([ (R-r)*cos(alpha) , (R-r)*sin(alpha), -0.5]) {
|
|
rotate([0, 0, alpha - R/r*alpha]) {
|
|
cylinder(h = 1, r = r, center = true);
|
|
translate([d, 0, 1.5]) {
|
|
cylinder(h = 2.2, r = 0.1, center = true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// This just makes a twisted hypotrochoid
|
|
translate([0,14, 0])
|
|
hypotrochoidLinear(4, 1, 1, 40, 40, 10, 30);
|
|
|
|
// End of Demo Section
|
|
//===========================================
|
|
|
|
|
|
//===========================================
|
|
// Epitrochoid
|
|
//
|
|
module epitrochoid(R, r, d, n, thickness) {
|
|
dth = 360/n;
|
|
for ( i = [0:n-1] ) {
|
|
polyhedron(points = [[0,0,0],
|
|
[(R+r)*cos(dth*i) - d*cos((R+r)/r*dth*i), (R+r)*sin(dth*i) - d*sin((R+r)/r*dth*i), 0],
|
|
[(R+r)*cos(dth*(i+1)) - d*cos((R+r)/r*dth*(i+1)), (R+r)*sin(dth*(i+1)) - d*sin((R+r)/r*dth*(i+1)), 0],
|
|
[0,0,thickness],
|
|
[(R+r)*cos(dth*i) - d*cos((R+r)/r*dth*i), (R+r)*sin(dth*i) - d*sin((R+r)/r*dth*i), thickness],
|
|
[(R+r)*cos(dth*(i+1)) - d*cos((R+r)/r*dth*(i+1)), (R+r)*sin(dth*(i+1)) - d*sin((R+r)/r*dth*(i+1)), thickness]],
|
|
triangles = [[0, 2, 1],
|
|
[0, 1, 3],
|
|
[3, 1, 4],
|
|
[3, 4, 5],
|
|
[0, 3, 2],
|
|
[2, 3, 5],
|
|
[1, 2, 4],
|
|
[2, 5, 4]]);
|
|
}
|
|
}
|
|
//===========================================
|
|
|
|
|
|
//===========================================
|
|
// Hypotrochoid
|
|
//
|
|
module hypotrochoid(R, r, d, n, thickness) {
|
|
dth = 360/n;
|
|
for ( i = [0:n-1] ) {
|
|
polyhedron(points = [[0,0,0],
|
|
[(R-r)*cos(dth*i) + d*cos((R-r)/r*dth*i), (R-r)*sin(dth*i) - d*sin((R-r)/r*dth*i), 0],
|
|
[(R-r)*cos(dth*(i+1)) + d*cos((R-r)/r*dth*(i+1)), (R-r)*sin(dth*(i+1)) - d*sin((R-r)/r*dth*(i+1)), 0],
|
|
[0,0,thickness],
|
|
[(R-r)*cos(dth*i) + d*cos((R-r)/r*dth*i), (R-r)*sin(dth*i) - d*sin((R-r)/r*dth*i), thickness],
|
|
[(R-r)*cos(dth*(i+1)) + d*cos((R-r)/r*dth*(i+1)), (R-r)*sin(dth*(i+1)) - d*sin((R-r)/r*dth*(i+1)), thickness]],
|
|
triangles = [[0, 2, 1],
|
|
[0, 1, 3],
|
|
[3, 1, 4],
|
|
[3, 4, 5],
|
|
[0, 3, 2],
|
|
[2, 3, 5],
|
|
[1, 2, 4],
|
|
[2, 5, 4]]);
|
|
}
|
|
}
|
|
//===========================================
|
|
|
|
|
|
//===========================================
|
|
// Epitrochoid Wedge with Bore
|
|
//
|
|
module epitrochoidWBore(R, r, d, n, p, thickness, rb) {
|
|
dth = 360/n;
|
|
union() {
|
|
for ( i = [0:p-1] ) {
|
|
polyhedron(points = [[rb*cos(dth*i), rb*sin(dth*i),0],
|
|
[(R+r)*cos(dth*i) - d*cos((R+r)/r*dth*i), (R+r)*sin(dth*i) - d*sin((R+r)/r*dth*i), 0],
|
|
[(R+r)*cos(dth*(i+1)) - d*cos((R+r)/r*dth*(i+1)), (R+r)*sin(dth*(i+1)) - d*sin((R+r)/r*dth*(i+1)), 0],
|
|
[rb*cos(dth*(i+1)), rb*sin(dth*(i+1)), 0],
|
|
[rb*cos(dth*i), rb*sin(dth*i), thickness],
|
|
[(R+r)*cos(dth*i) - d*cos((R+r)/r*dth*i), (R+r)*sin(dth*i) - d*sin((R+r)/r*dth*i), thickness],
|
|
[(R+r)*cos(dth*(i+1)) - d*cos((R+r)/r*dth*(i+1)), (R+r)*sin(dth*(i+1)) - d*sin((R+r)/r*dth*(i+1)), thickness],
|
|
[rb*cos(dth*(i+1)), rb*sin(dth*(i+1)), thickness]],
|
|
triangles = [[0, 1, 4], [4, 1, 5],
|
|
[1, 2, 5], [5, 2, 6],
|
|
[2, 3, 7], [7, 6, 2],
|
|
[3, 0, 4], [4, 7, 3],
|
|
[4, 5, 7], [7, 5, 6],
|
|
[0, 3, 1], [1, 3, 2]]);
|
|
}
|
|
}
|
|
}
|
|
//===========================================
|
|
|
|
|
|
//===========================================
|
|
// Epitrochoid Wedge with Bore, Linear Extrude
|
|
//
|
|
module epitrochoidWBoreLinear(R, r, d, n, p, thickness, rb, twist) {
|
|
dth = 360/n;
|
|
linear_extrude(height = thickness, convexity = 10, twist = twist) {
|
|
union() {
|
|
for ( i = [0:p-1] ) {
|
|
polygon(points = [[rb*cos(dth*i), rb*sin(dth*i)],
|
|
[(R+r)*cos(dth*i) - d*cos((R+r)/r*dth*i), (R+r)*sin(dth*i) - d*sin((R+r)/r*dth*i)],
|
|
[(R+r)*cos(dth*(i+1)) - d*cos((R+r)/r*dth*(i+1)), (R+r)*sin(dth*(i+1)) - d*sin((R+r)/r*dth*(i+1))],
|
|
[rb*cos(dth*(i+1)), rb*sin(dth*(i+1))]],
|
|
paths = [[0, 1, 2, 3]], convexity = 10);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
//===========================================
|
|
|
|
|
|
//===========================================
|
|
// Epitrochoid Wedge, Linear Extrude
|
|
//
|
|
module epitrochoidLinear(R, r, d, n, p, thickness, twist) {
|
|
dth = 360/n;
|
|
linear_extrude(height = thickness, convexity = 10, twist = twist) {
|
|
union() {
|
|
for ( i = [0:p-1] ) {
|
|
polygon(points = [[0, 0],
|
|
[(R+r)*cos(dth*i) - d*cos((R+r)/r*dth*i), (R+r)*sin(dth*i) - d*sin((R+r)/r*dth*i)],
|
|
[(R+r)*cos(dth*(i+1)) - d*cos((R+r)/r*dth*(i+1)), (R+r)*sin(dth*(i+1)) - d*sin((R+r)/r*dth*(i+1))]],
|
|
paths = [[0, 1, 2]], convexity = 10);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
//===========================================
|
|
|
|
|
|
//===========================================
|
|
// Hypotrochoid Wedge with Bore
|
|
//
|
|
module hypotrochoidWBore(R, r, d, n, p, thickness, rb) {
|
|
dth = 360/n;
|
|
union() {
|
|
for ( i = [0:p-1] ) {
|
|
polyhedron(points = [[rb*cos(dth*i), rb*sin(dth*i),0],
|
|
[(R-r)*cos(dth*i) + d*cos((R-r)/r*dth*i), (R-r)*sin(dth*i) - d*sin((R-r)/r*dth*i), 0],
|
|
[(R-r)*cos(dth*(i+1)) + d*cos((R-r)/r*dth*(i+1)), (R-r)*sin(dth*(i+1)) - d*sin((R-r)/r*dth*(i+1)), 0],
|
|
[rb*cos(dth*(i+1)), rb*sin(dth*(i+1)), 0],
|
|
[rb*cos(dth*i), rb*sin(dth*i), thickness],
|
|
[(R-r)*cos(dth*i) + d*cos((R-r)/r*dth*i), (R-r)*sin(dth*i) - d*sin((R-r)/r*dth*i), thickness],
|
|
[(R-r)*cos(dth*(i+1)) + d*cos((R-r)/r*dth*(i+1)), (R-r)*sin(dth*(i+1)) - d*sin((R-r)/r*dth*(i+1)), thickness],
|
|
[rb*cos(dth*(i+1)), rb*sin(dth*(i+1)), thickness]],
|
|
triangles = [[0, 1, 4], [4, 1, 5],
|
|
[1, 2, 5], [5, 2, 6],
|
|
[2, 3, 7], [7, 6, 2],
|
|
[3, 0, 4], [4, 7, 3],
|
|
[4, 5, 7], [7, 5, 6],
|
|
[0, 3, 1], [1, 3, 2]]);
|
|
}
|
|
}
|
|
}
|
|
//===========================================
|
|
|
|
|
|
//===========================================
|
|
// Hypotrochoid Wedge with Bore, Linear Extrude
|
|
//
|
|
module hypotrochoidWBoreLinear(R, r, d, n, p, thickness, rb, twist) {
|
|
dth = 360/n;
|
|
linear_extrude(height = thickness, convexity = 10, twist = twist) {
|
|
union() {
|
|
for ( i = [0:p-1] ) {
|
|
polygon(points = [[rb*cos(dth*i), rb*sin(dth*i)],
|
|
[(R-r)*cos(dth*i) + d*cos((R-r)/r*dth*i), (R-r)*sin(dth*i) - d*sin((R-r)/r*dth*i)],
|
|
[(R-r)*cos(dth*(i+1)) + d*cos((R-r)/r*dth*(i+1)), (R-r)*sin(dth*(i+1)) - d*sin((R-r)/r*dth*(i+1))],
|
|
[rb*cos(dth*(i+1)), rb*sin(dth*(i+1))]],
|
|
paths = [[0, 1, 2, 3]], convexity = 10);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
//===========================================
|
|
|
|
|
|
//===========================================
|
|
// Hypotrochoid Wedge, Linear Extrude
|
|
//
|
|
module hypotrochoidLinear(R, r, d, n, p, thickness, twist) {
|
|
dth = 360/n;
|
|
linear_extrude(height = thickness, convexity = 10, twist = twist) {
|
|
union() {
|
|
for ( i = [0:p-1] ) {
|
|
polygon(points = [[0, 0],
|
|
[(R-r)*cos(dth*i) + d*cos((R-r)/r*dth*i), (R-r)*sin(dth*i) - d*sin((R-r)/r*dth*i)],
|
|
[(R-r)*cos(dth*(i+1)) + d*cos((R-r)/r*dth*(i+1)), (R-r)*sin(dth*(i+1)) - d*sin((R-r)/r*dth*(i+1))]],
|
|
paths = [[0, 1, 2]], convexity = 10);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
//===========================================
|