Merge branch 'master' of github.com:rambo/MCAD
Conflicts: triangles.scad
This commit is contained in:
commit
add07c01b0
43
boxes.scad
Normal file
43
boxes.scad
Normal file
|
@ -0,0 +1,43 @@
|
|||
// Library: boxes.scad
|
||||
// Version: 1.0
|
||||
// Author: Marius Kintel
|
||||
// Copyright: 2010
|
||||
// License: BSD
|
||||
|
||||
// roundedBox([width, height, depth], float radius, bool sidesonly);
|
||||
|
||||
// EXAMPLE USAGE:
|
||||
// roundedBox([20, 30, 40], 5, true);
|
||||
|
||||
// size is a vector [w, h, d]
|
||||
module roundedBox(size, radius, sidesonly)
|
||||
{
|
||||
rot = [ [0,0,0], [90,0,90], [90,90,0] ];
|
||||
if (sidesonly) {
|
||||
cube(size - [2*radius,0,0], true);
|
||||
cube(size - [0,2*radius,0], true);
|
||||
for (x = [radius-size[0]/2, -radius+size[0]/2],
|
||||
y = [radius-size[1]/2, -radius+size[1]/2]) {
|
||||
translate([x,y,0]) cylinder(r=radius, h=size[2], center=true);
|
||||
}
|
||||
}
|
||||
else {
|
||||
cube([size[0], size[1]-radius*2, size[2]-radius*2], center=true);
|
||||
cube([size[0]-radius*2, size[1], size[2]-radius*2], center=true);
|
||||
cube([size[0]-radius*2, size[1]-radius*2, size[2]], center=true);
|
||||
|
||||
for (axis = [0:2]) {
|
||||
for (x = [radius-size[axis]/2, -radius+size[axis]/2],
|
||||
y = [radius-size[(axis+1)%3]/2, -radius+size[(axis+1)%3]/2]) {
|
||||
rotate(rot[axis])
|
||||
translate([x,y,0])
|
||||
cylinder(h=size[(axis+2)%3]-2*radius, r=radius, center=true);
|
||||
}
|
||||
}
|
||||
for (x = [radius-size[0]/2, -radius+size[0]/2],
|
||||
y = [radius-size[1]/2, -radius+size[1]/2],
|
||||
z = [radius-size[2]/2, -radius+size[2]/2]) {
|
||||
translate([x,y,z]) sphere(radius);
|
||||
}
|
||||
}
|
||||
}
|
40
gears.scad
40
gears.scad
|
@ -1,6 +1,6 @@
|
|||
//test_involute_curve();
|
||||
test_gears();
|
||||
demo_3d_gears();
|
||||
//test_gears();
|
||||
//demo_3d_gears();
|
||||
|
||||
// Geometry Sources:
|
||||
// http://www.cartertools.com/involute.html
|
||||
|
@ -15,14 +15,14 @@ module gear(number_of_teeth,
|
|||
pressure_angle=20, clearance = 0)
|
||||
{
|
||||
if (circular_pitch==false && diametral_pitch==false) echo("MCAD ERROR: gear module needs either a diametral_pitch or circular_pitch");
|
||||
|
||||
|
||||
//Convert diametrial pitch to our native circular pitch
|
||||
circular_pitch = (circular_pitch!=false?circular_pitch:180/diametral_pitch);
|
||||
|
||||
|
||||
// Pitch diameter: Diameter of pitch circle.
|
||||
pitch_diameter = number_of_teeth * circular_pitch / 180;
|
||||
pitch_radius = pitch_diameter/2;
|
||||
|
||||
|
||||
// Base Circle
|
||||
base_diameter = pitch_diameter*cos(pressure_angle);
|
||||
base_radius = base_diameter/2;
|
||||
|
@ -32,24 +32,24 @@ module gear(number_of_teeth,
|
|||
|
||||
// Addendum: Radial distance from pitch circle to outside circle.
|
||||
addendum = 1/pitch_diametrial;
|
||||
|
||||
|
||||
//Outer Circle
|
||||
outer_radius = pitch_radius+addendum;
|
||||
outer_diameter = outer_radius*2;
|
||||
|
||||
|
||||
// Dedendum: Radial distance from pitch circle to root diameter
|
||||
dedendum = addendum + clearance;
|
||||
|
||||
// Root diameter: Diameter of bottom of tooth spaces.
|
||||
root_radius = pitch_radius-dedendum;
|
||||
root_diameter = root_radius * 2;
|
||||
|
||||
|
||||
half_thick_angle = 360 / (4 * number_of_teeth);
|
||||
|
||||
|
||||
union()
|
||||
{
|
||||
rotate(half_thick_angle) circle($fn=number_of_teeth*2, r=root_radius*1.001);
|
||||
|
||||
|
||||
for (i= [1:number_of_teeth])
|
||||
//for (i = [0])
|
||||
{
|
||||
|
@ -76,32 +76,32 @@ module involute_gear_tooth(
|
|||
)
|
||||
{
|
||||
pitch_to_base_angle = involute_intersect_angle( base_radius, pitch_radius );
|
||||
|
||||
|
||||
outer_to_base_angle = involute_intersect_angle( base_radius, outer_radius );
|
||||
|
||||
|
||||
base1 = 0 - pitch_to_base_angle - half_thick_angle;
|
||||
pitch1 = 0 - half_thick_angle;
|
||||
outer1 = outer_to_base_angle - pitch_to_base_angle - half_thick_angle;
|
||||
|
||||
|
||||
b1 = polar_to_cartesian([ base1, base_radius ]);
|
||||
p1 = polar_to_cartesian([ pitch1, pitch_radius ]);
|
||||
o1 = polar_to_cartesian([ outer1, outer_radius ]);
|
||||
|
||||
|
||||
b2 = polar_to_cartesian([ -base1, base_radius ]);
|
||||
p2 = polar_to_cartesian([ -pitch1, pitch_radius ]);
|
||||
o2 = polar_to_cartesian([ -outer1, outer_radius ]);
|
||||
|
||||
|
||||
// ( root_radius > base_radius variables )
|
||||
pitch_to_root_angle = pitch_to_base_angle - involute_intersect_angle(base_radius, root_radius );
|
||||
root1 = pitch1 - pitch_to_root_angle;
|
||||
root2 = -pitch1 + pitch_to_root_angle;
|
||||
r1_t = polar_to_cartesian([ root1, root_radius ]);
|
||||
r2_t = polar_to_cartesian([ -root1, root_radius ]);
|
||||
|
||||
|
||||
// ( else )
|
||||
r1_f = polar_to_cartesian([ base1, root_radius ]);
|
||||
r2_f = polar_to_cartesian([ -base1, root_radius ]);
|
||||
|
||||
|
||||
if (root_radius > base_radius)
|
||||
{
|
||||
//echo("true");
|
||||
|
@ -115,7 +115,7 @@ module involute_gear_tooth(
|
|||
r1_f, b1,p1,o1,o2,p2,b2,r2_f
|
||||
], convexity = 3);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
// Mathematical Functions
|
||||
|
@ -157,7 +157,7 @@ module demo_3d_gears()
|
|||
translate([0,0,10]) linear_extrude(height = 10, center = true, convexity = 10, twist = 45)
|
||||
gear(number_of_teeth=17,diametral_pitch=1);
|
||||
}
|
||||
|
||||
|
||||
//spur gear
|
||||
translate([0,-50]) linear_extrude(height = 10, center = true, convexity = 10, twist = 0)
|
||||
gear(number_of_teeth=17,diametral_pitch=1);
|
||||
|
@ -170,4 +170,4 @@ module test_involute_curve()
|
|||
{
|
||||
translate(polar_to_cartesian([involute_intersect_angle( 0.1,i) , i ])) circle($fn=15, r=0.5);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -32,13 +32,13 @@ module test_bevel_gear_pair(){
|
|||
|
||||
module test_bevel_gear(){bevel_gear();}
|
||||
|
||||
bevel_gear();
|
||||
//bevel_gear();
|
||||
|
||||
pi=3.1415926535897932384626433832795;
|
||||
|
||||
//==================================================
|
||||
// Bevel Gears:
|
||||
// Two gears with the same cone distance, circular pitch (measured at the cone distance)
|
||||
// Two gears with the same cone distance, circular pitch (measured at the cone distance)
|
||||
// and pressure angle will mesh.
|
||||
|
||||
module bevel_gear_pair (
|
||||
|
@ -49,7 +49,7 @@ module bevel_gear_pair (
|
|||
{
|
||||
outside_pitch_radius1 = gear1_teeth * outside_circular_pitch / 360;
|
||||
outside_pitch_radius2 = gear2_teeth * outside_circular_pitch / 360;
|
||||
pitch_apex1=outside_pitch_radius2 * sin (axis_angle) +
|
||||
pitch_apex1=outside_pitch_radius2 * sin (axis_angle) +
|
||||
(outside_pitch_radius2 * cos (axis_angle) + outside_pitch_radius1) / tan (axis_angle);
|
||||
cone_distance = sqrt (pow (pitch_apex1, 2) + pow (outside_pitch_radius1, 2));
|
||||
pitch_apex2 = sqrt (pow (cone_distance, 2) - pow (outside_pitch_radius2, 2));
|
||||
|
@ -68,7 +68,7 @@ module bevel_gear_pair (
|
|||
cone_distance=cone_distance,
|
||||
pressure_angle=30,
|
||||
outside_circular_pitch=outside_circular_pitch);
|
||||
|
||||
|
||||
rotate([0,-(pitch_angle1+pitch_angle2),0])
|
||||
translate([0,0,-pitch_apex2])
|
||||
bevel_gear (
|
||||
|
@ -125,7 +125,7 @@ module bevel_gear (
|
|||
// Calculate and display the pitch angle. This is needed to determine the angle to mount two meshing cone gears.
|
||||
|
||||
// Base Circle for forming the involute teeth shape.
|
||||
base_radius = back_cone_radius * cos (pressure_angle);
|
||||
base_radius = back_cone_radius * cos (pressure_angle);
|
||||
|
||||
// Diametrial pitch: Number of teeth per unit length.
|
||||
pitch_diametrial = number_of_teeth / outside_pitch_diameter;
|
||||
|
@ -143,9 +143,9 @@ module bevel_gear (
|
|||
root_cone_full_radius = tan (root_angle)*apex_to_apex;
|
||||
back_cone_full_radius=apex_to_apex / tan (pitch_angle);
|
||||
|
||||
back_cone_end_radius =
|
||||
outside_pitch_radius -
|
||||
dedendum * cos (pitch_angle) -
|
||||
back_cone_end_radius =
|
||||
outside_pitch_radius -
|
||||
dedendum * cos (pitch_angle) -
|
||||
gear_thickness / tan (pitch_angle);
|
||||
back_cone_descent = dedendum * sin (pitch_angle) + gear_thickness;
|
||||
|
||||
|
@ -158,9 +158,9 @@ module bevel_gear (
|
|||
face_cone_height = apex_to_apex-face_width / cos (pitch_angle);
|
||||
face_cone_full_radius = face_cone_height / tan (pitch_angle);
|
||||
face_cone_descent = dedendum * sin (pitch_angle);
|
||||
face_cone_end_radius =
|
||||
face_cone_end_radius =
|
||||
outside_pitch_radius -
|
||||
face_width / sin (pitch_angle) -
|
||||
face_width / sin (pitch_angle) -
|
||||
face_cone_descent / tan (pitch_angle);
|
||||
|
||||
// For the bevel_gear_flat finish option, calculate the height of a cube to select the portion of the gear that includes the full pitch face.
|
||||
|
@ -198,7 +198,7 @@ module bevel_gear (
|
|||
{
|
||||
translate ([0,0,-back_cone_descent])
|
||||
cylinder (
|
||||
$fn=number_of_teeth*2,
|
||||
$fn=number_of_teeth*2,
|
||||
r1=back_cone_end_radius,
|
||||
r2=back_cone_full_radius*2,
|
||||
h=apex_to_apex + back_cone_descent);
|
||||
|
@ -211,7 +211,7 @@ module bevel_gear (
|
|||
bevel_gear_flat_height]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (finish == bevel_gear_back_cone)
|
||||
{
|
||||
translate ([0,0,-face_cone_descent])
|
||||
|
@ -223,7 +223,7 @@ module bevel_gear (
|
|||
|
||||
translate ([0,0,pitch_apex - apex_to_apex])
|
||||
cylinder (r=bore_diameter/2,h=apex_to_apex);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
module involute_bevel_gear_tooth (
|
||||
|
@ -247,9 +247,9 @@ module involute_bevel_gear_tooth (
|
|||
|
||||
min_radius = max (base_radius*2,root_radius*2);
|
||||
|
||||
pitch_point =
|
||||
pitch_point =
|
||||
involute (
|
||||
base_radius*2,
|
||||
base_radius*2,
|
||||
involute_intersect_angle (base_radius*2, back_cone_radius*2));
|
||||
pitch_angle = atan2 (pitch_point[1], pitch_point[0]);
|
||||
centre_angle = pitch_angle + half_thick_angle;
|
||||
|
@ -310,7 +310,7 @@ module gear (
|
|||
involute_facets=0,
|
||||
flat=false)
|
||||
{
|
||||
if (circular_pitch==false && diametral_pitch==false)
|
||||
if (circular_pitch==false && diametral_pitch==false)
|
||||
echo("MCAD ERROR: gear module needs either a diametral_pitch or circular_pitch");
|
||||
|
||||
//Convert diametrial pitch to our native circular pitch
|
||||
|
@ -387,7 +387,7 @@ module gear (
|
|||
circle (r=bore_diameter/2);
|
||||
if (circles>0)
|
||||
{
|
||||
for(i=[0:circles-1])
|
||||
for(i=[0:circles-1])
|
||||
rotate([0,0,i*360/circles])
|
||||
translate([circle_orbit_diameter/2,0,-1])
|
||||
linear_exturde_flat_option(flat =flat, height=max(gear_thickness,rim_thickness)+3)
|
||||
|
@ -488,15 +488,15 @@ function involute_intersect_angle (base_radius, radius) = sqrt (pow (radius/base
|
|||
|
||||
// Calculate the involute position for a given base radius and involute angle.
|
||||
|
||||
function rotated_involute (rotate, base_radius, involute_angle) =
|
||||
function rotated_involute (rotate, base_radius, involute_angle) =
|
||||
[
|
||||
cos (rotate) * involute (base_radius, involute_angle)[0] + sin (rotate) * involute (base_radius, involute_angle)[1],
|
||||
cos (rotate) * involute (base_radius, involute_angle)[1] - sin (rotate) * involute (base_radius, involute_angle)[0]
|
||||
];
|
||||
|
||||
function mirror_point (coord) =
|
||||
function mirror_point (coord) =
|
||||
[
|
||||
coord[0],
|
||||
coord[0],
|
||||
-coord[1]
|
||||
];
|
||||
|
||||
|
@ -506,7 +506,7 @@ function rotate_point (rotate, coord) =
|
|||
cos (rotate) * coord[1] - sin (rotate) * coord[0]
|
||||
];
|
||||
|
||||
function involute (base_radius, involute_angle) =
|
||||
function involute (base_radius, involute_angle) =
|
||||
[
|
||||
base_radius*(cos (involute_angle) + involute_angle*pi/180*sin (involute_angle)),
|
||||
base_radius*(sin (involute_angle) - involute_angle*pi/180*cos (involute_angle)),
|
||||
|
@ -523,7 +523,7 @@ module test_gears()
|
|||
gear (number_of_teeth=17,
|
||||
circular_pitch=500,
|
||||
circles=8);
|
||||
|
||||
|
||||
rotate ([0,0,360*4/17])
|
||||
translate ([39.088888,0,0])
|
||||
{
|
||||
|
@ -587,7 +587,7 @@ module test_gears()
|
|||
circles=0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
rotate ([0,0,360*-5/17])
|
||||
translate ([44.444444444,0,0])
|
||||
gear (number_of_teeth=15,
|
||||
|
@ -598,7 +598,7 @@ module test_gears()
|
|||
gear_thickness=4,
|
||||
hub_thickness=6,
|
||||
circles=9);
|
||||
|
||||
|
||||
rotate ([0,0,360*-1/17])
|
||||
translate ([30.5555555,0,-1])
|
||||
gear (number_of_teeth=5,
|
||||
|
@ -612,7 +612,7 @@ module test_gears()
|
|||
module meshing_double_helix ()
|
||||
{
|
||||
test_double_helix_gear ();
|
||||
|
||||
|
||||
mirror ([0,1,0])
|
||||
translate ([58.33333333,0,0])
|
||||
test_double_helix_gear (teeth=13,circles=6);
|
||||
|
@ -676,7 +676,7 @@ module test_backlash ()
|
|||
bore_diameter=5,
|
||||
backlash = 2,
|
||||
circles=8);
|
||||
|
||||
|
||||
rotate ([0,0,360/teeth/4])
|
||||
gear (
|
||||
number_of_teeth = teeth,
|
||||
|
|
|
@ -4,20 +4,21 @@ from subprocess import Popen, PIPE
|
|||
mod_re = (r"\bmodule\s+(", r")\s*\(\s*")
|
||||
func_re = (r"\bfunction\s+(", r")\s*\(")
|
||||
|
||||
def extract_mod_names(fpath, name_re=r"\w+"):
|
||||
regex = name_re.join(mod_re)
|
||||
def extract_definitions(fpath, name_re=r"\w+", def_re=""):
|
||||
regex = name_re.join(def_re)
|
||||
matcher = re.compile(regex)
|
||||
return (m.group(1) for m in matcher.finditer(fpath.read()))
|
||||
|
||||
def extract_mod_names(fpath, name_re=r"\w+"):
|
||||
return extract_definitions(fpath, name_re=name_re, def_re=mod_re)
|
||||
|
||||
def extract_func_names(fpath, name_re=r"\w+"):
|
||||
regex = name_re.join(func_re)
|
||||
matcher = re.compile(regex)
|
||||
return (m.group(1) for m in matcher.finditer(fpath.read()))
|
||||
return extract_definitions(fpath, name_re=name_re, def_re=func_re)
|
||||
|
||||
def collect_test_modules():
|
||||
dirpath = py.path.local("./")
|
||||
def collect_test_modules(dirpath=None):
|
||||
dirpath = dirpath or py.path.local("./")
|
||||
print "Collecting openscad test module names"
|
||||
|
||||
|
||||
test_files = {}
|
||||
for fpath in dirpath.visit('*.scad'):
|
||||
#print fpath
|
||||
|
@ -26,21 +27,24 @@ def collect_test_modules():
|
|||
test_files[fpath] = modules
|
||||
return test_files
|
||||
|
||||
collect_test_modules()
|
||||
class Timeout(Exception): pass
|
||||
|
||||
def call_openscad(path, stlpath, timeout=20):
|
||||
def call_openscad(path, stlpath, timeout=1):
|
||||
try:
|
||||
proc = Popen(['openscad', '-s', str(stlpath), str(path)],
|
||||
command = ['openscad', '-s', str(stlpath), str(path)]
|
||||
print command
|
||||
proc = Popen(command,
|
||||
stdout=PIPE, stderr=PIPE, close_fds=True)
|
||||
calltime = time.time()
|
||||
time.sleep(0.01)
|
||||
#print calltime
|
||||
while True:
|
||||
if proc.poll() is not None:
|
||||
break
|
||||
time.sleep(0.1)
|
||||
time.sleep(0.5)
|
||||
#print time.time()
|
||||
if time.time() > calltime + timeout:
|
||||
raise Exception("Timeout")
|
||||
raise Timeout()
|
||||
finally:
|
||||
try:
|
||||
proc.terminate()
|
||||
|
|
135
shapes.scad
Normal file
135
shapes.scad
Normal file
|
@ -0,0 +1,135 @@
|
|||
/*
|
||||
* OpenSCAD Shapes Library (www.openscad.org)
|
||||
* Copyright (C) 2009 Catarina Mota
|
||||
*
|
||||
* License: LGPL 2.1 or later
|
||||
*/
|
||||
|
||||
|
||||
//box(width, height, depth);
|
||||
//roundedBox(width, height, depth, factor);
|
||||
//cone(height, radius);
|
||||
//oval(width, height, depth);
|
||||
//tube(height, radius, wall);
|
||||
//ovalTube(width, height, depth, wall);
|
||||
//hexagon(height, depth);
|
||||
//octagon(height, depth);
|
||||
//dodecagon(height, depth);
|
||||
//hexagram(height, depth);
|
||||
//rightTriangle(adjacent, opposite, depth);
|
||||
//equiTriangle(side, depth);
|
||||
//12ptStar(height, depth);
|
||||
|
||||
//----------------------
|
||||
|
||||
// size is a vector [w, h, d]
|
||||
module box(size) {
|
||||
cube(size, true);
|
||||
}
|
||||
|
||||
// size is a vector [w, h, d]
|
||||
module roundedBox(size, radius) {
|
||||
cube(size - [2*radius,0,0], true);
|
||||
cube(size - [0,2*radius,0], true);
|
||||
for (x = [radius-size[0]/2, -radius+size[0]/2],
|
||||
y = [radius-size[1]/2, -radius+size[1]/2]) {
|
||||
translate([x,y,0]) cylinder(r=radius, h=size[2], center=true);
|
||||
}
|
||||
}
|
||||
|
||||
module cone(height, radius, center = false) {
|
||||
cylinder(height, radius, 0, center);
|
||||
}
|
||||
|
||||
module oval(w,h, height, center = false) {
|
||||
scale([1, h/w, 1]) cylinder(h=height, r=w, center=center);
|
||||
}
|
||||
|
||||
// wall is wall thickness
|
||||
module tube(height, radius, wall, center = false) {
|
||||
difference() {
|
||||
cylinder(h=height, r=radius, center=center);
|
||||
cylinder(h=height, r=radius-wall, center=center);
|
||||
}
|
||||
}
|
||||
|
||||
// wall is wall thickness
|
||||
module ovalTube(height, rx, ry, wall, center = false) {
|
||||
difference() {
|
||||
scale([1, ry/rx, 1]) cylinder(h=height, r=rx, center=center);
|
||||
scale([(rx-wall)/rx, (ry-wall)/rx, 1]) cylinder(h=height, r=rx, center=center);
|
||||
}
|
||||
}
|
||||
|
||||
// size is the XY plane size, height in Z
|
||||
module hexagon(size, height) {
|
||||
boxWidth = size/1.75;
|
||||
for (r = [-60, 0, 60]) rotate([0,0,r]) cube([boxWidth, size, height], true);
|
||||
}
|
||||
|
||||
// size is the XY plane size, height in Z
|
||||
module octagon(size, height) {
|
||||
intersection() {
|
||||
cube([size, size, height], true);
|
||||
rotate([0,0,45]) cube([size, size, height], true);
|
||||
}
|
||||
}
|
||||
|
||||
// size is the XY plane size, height in Z
|
||||
module dodecagon(size, height) {
|
||||
intersection() {
|
||||
hexagon(size, height);
|
||||
rotate([0,0,90]) hexagon(size, height);
|
||||
}
|
||||
}
|
||||
|
||||
// size is the XY plane size, height in Z
|
||||
module hexagram(size, height) {
|
||||
boxWidth=size/1.75;
|
||||
for (v = [[0,1],[0,-1],[1,-1]]) {
|
||||
intersection() {
|
||||
rotate([0,0,60*v[0]]) cube([size, boxWidth, height], true);
|
||||
rotate([0,0,60*v[1]]) cube([size, boxWidth, height], true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
module rightTriangle(adjacent, opposite, height) {
|
||||
difference() {
|
||||
translate([-adjacent/2,opposite/2,0]) cube([adjacent, opposite, height], true);
|
||||
translate([-adjacent,0,0]) {
|
||||
rotate([0,0,atan(opposite/adjacent)]) dislocateBox(adjacent*2, opposite, height);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
module equiTriangle(side, height) {
|
||||
difference() {
|
||||
translate([-side/2,side/2,0]) cube([side, side, height], true);
|
||||
rotate([0,0,30]) dislocateBox(side*2, side, height);
|
||||
translate([-side,0,0]) {
|
||||
rotate([0,0,60]) dislocateBox(side*2, side, height);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
module 12ptStar(size, height) {
|
||||
starNum = 3;
|
||||
starAngle = 360/starNum;
|
||||
for (s = [1:starNum]) {
|
||||
rotate([0, 0, s*starAngle]) cube([size, size, height], true);
|
||||
}
|
||||
}
|
||||
|
||||
//-----------------------
|
||||
//MOVES THE ROTATION AXIS OF A BOX FROM ITS CENTER TO THE BOTTOM LEFT CORNER
|
||||
//FIXME: Why are the dimensions changed?
|
||||
// why not just translate([0,0,-d/2]) cube([w,h,d]);
|
||||
module dislocateBox(w,h,d) {
|
||||
translate([w/2,h,0]) {
|
||||
difference() {
|
||||
cube([w, h*2, d+1]);
|
||||
translate([-w,0,0]) cube([w, h*2, d+1]);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -2,21 +2,22 @@ import py
|
|||
|
||||
from openscad_utils import *
|
||||
|
||||
def pytest_generate_tests(metafunc):
|
||||
if "modpath" in metafunc.funcargnames:
|
||||
if "modname" in metafunc.funcargnames:
|
||||
for fpath, modnames in collect_test_modules().items():
|
||||
for modname in modnames:
|
||||
metafunc.addcall(funcargs=dict(modname=modname, modpath=fpath))
|
||||
else:
|
||||
dirpath = py.path.local("./")
|
||||
for fpath in dirpath.visit('*.scad'):
|
||||
metafunc.addcall(funcargs=dict(modpath=fpath))
|
||||
|
||||
temppath = py.test.ensuretemp('MCAD')
|
||||
|
||||
def pytest_generate_tests(metafunc):
|
||||
if "modpath" in metafunc.funcargnames:
|
||||
for fpath, modnames in collect_test_modules().items():
|
||||
os.system("cp %s %s/" % (fpath, temppath))
|
||||
if "modname" in metafunc.funcargnames:
|
||||
for modname in modnames:
|
||||
metafunc.addcall(funcargs=dict(modname=modname, modpath=fpath))
|
||||
else:
|
||||
metafunc.addcall(funcargs=dict(modpath=fpath))
|
||||
|
||||
|
||||
def test_compile(modname, modpath):
|
||||
tempname = "test_" + modpath.basename + modname
|
||||
tempname = "test_" + modpath.basename + modname + '.scad'
|
||||
fpath = temppath.join(tempname)
|
||||
stlpath = temppath.join(tempname + ".stl")
|
||||
f = fpath.open('w')
|
||||
|
@ -24,10 +25,10 @@ def test_compile(modname, modpath):
|
|||
//generated testfile
|
||||
include <%s>
|
||||
|
||||
%s()
|
||||
%s();
|
||||
""" % (modpath, modname))
|
||||
f.flush
|
||||
output = call_openscad(path=fpath, stlpath=stlpath)
|
||||
output = call_openscad(path=fpath, stlpath=stlpath, timeout=5)
|
||||
print output
|
||||
assert output[0] is 0
|
||||
assert "warning" or "error" not in output[2].strip().lowercase()
|
||||
|
@ -40,5 +41,6 @@ def test_compile_default(modpath):
|
|||
print output
|
||||
assert output[0] is 0
|
||||
assert "warning" or "error" not in output[2].strip().lowercase()
|
||||
assert len(stlpath.readlines()) == 2
|
||||
|
||||
|
||||
|
|
|
@ -7,14 +7,12 @@
|
|||
* License: LGPL 2.1
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* Standard right-angled triangle
|
||||
*
|
||||
* @param number o_len Lenght of the opposite side
|
||||
* @param number a_len Lenght of the adjacent side
|
||||
* @param number depth How wide/deep the triangle is in the 3rd dimension
|
||||
* @todo a better way ?
|
||||
*/
|
||||
module triangle(o_len, a_len, depth)
|
||||
{
|
||||
|
|
Loading…
Reference in a new issue