Merge branch 'master' of github.com:rambo/MCAD

Conflicts:
	triangles.scad
This commit is contained in:
Eero af Heurlin 2010-08-26 12:27:55 +03:00
commit add07c01b0
7 changed files with 256 additions and 74 deletions

43
boxes.scad Normal file
View file

@ -0,0 +1,43 @@
// Library: boxes.scad
// Version: 1.0
// Author: Marius Kintel
// Copyright: 2010
// License: BSD
// roundedBox([width, height, depth], float radius, bool sidesonly);
// EXAMPLE USAGE:
// roundedBox([20, 30, 40], 5, true);
// size is a vector [w, h, d]
module roundedBox(size, radius, sidesonly)
{
rot = [ [0,0,0], [90,0,90], [90,90,0] ];
if (sidesonly) {
cube(size - [2*radius,0,0], true);
cube(size - [0,2*radius,0], true);
for (x = [radius-size[0]/2, -radius+size[0]/2],
y = [radius-size[1]/2, -radius+size[1]/2]) {
translate([x,y,0]) cylinder(r=radius, h=size[2], center=true);
}
}
else {
cube([size[0], size[1]-radius*2, size[2]-radius*2], center=true);
cube([size[0]-radius*2, size[1], size[2]-radius*2], center=true);
cube([size[0]-radius*2, size[1]-radius*2, size[2]], center=true);
for (axis = [0:2]) {
for (x = [radius-size[axis]/2, -radius+size[axis]/2],
y = [radius-size[(axis+1)%3]/2, -radius+size[(axis+1)%3]/2]) {
rotate(rot[axis])
translate([x,y,0])
cylinder(h=size[(axis+2)%3]-2*radius, r=radius, center=true);
}
}
for (x = [radius-size[0]/2, -radius+size[0]/2],
y = [radius-size[1]/2, -radius+size[1]/2],
z = [radius-size[2]/2, -radius+size[2]/2]) {
translate([x,y,z]) sphere(radius);
}
}
}

View file

@ -1,6 +1,6 @@
//test_involute_curve();
test_gears();
demo_3d_gears();
//test_gears();
//demo_3d_gears();
// Geometry Sources:
// http://www.cartertools.com/involute.html
@ -15,14 +15,14 @@ module gear(number_of_teeth,
pressure_angle=20, clearance = 0)
{
if (circular_pitch==false && diametral_pitch==false) echo("MCAD ERROR: gear module needs either a diametral_pitch or circular_pitch");
//Convert diametrial pitch to our native circular pitch
circular_pitch = (circular_pitch!=false?circular_pitch:180/diametral_pitch);
// Pitch diameter: Diameter of pitch circle.
pitch_diameter = number_of_teeth * circular_pitch / 180;
pitch_radius = pitch_diameter/2;
// Base Circle
base_diameter = pitch_diameter*cos(pressure_angle);
base_radius = base_diameter/2;
@ -32,24 +32,24 @@ module gear(number_of_teeth,
// Addendum: Radial distance from pitch circle to outside circle.
addendum = 1/pitch_diametrial;
//Outer Circle
outer_radius = pitch_radius+addendum;
outer_diameter = outer_radius*2;
// Dedendum: Radial distance from pitch circle to root diameter
dedendum = addendum + clearance;
// Root diameter: Diameter of bottom of tooth spaces.
root_radius = pitch_radius-dedendum;
root_diameter = root_radius * 2;
half_thick_angle = 360 / (4 * number_of_teeth);
union()
{
rotate(half_thick_angle) circle($fn=number_of_teeth*2, r=root_radius*1.001);
for (i= [1:number_of_teeth])
//for (i = [0])
{
@ -76,32 +76,32 @@ module involute_gear_tooth(
)
{
pitch_to_base_angle = involute_intersect_angle( base_radius, pitch_radius );
outer_to_base_angle = involute_intersect_angle( base_radius, outer_radius );
base1 = 0 - pitch_to_base_angle - half_thick_angle;
pitch1 = 0 - half_thick_angle;
outer1 = outer_to_base_angle - pitch_to_base_angle - half_thick_angle;
b1 = polar_to_cartesian([ base1, base_radius ]);
p1 = polar_to_cartesian([ pitch1, pitch_radius ]);
o1 = polar_to_cartesian([ outer1, outer_radius ]);
b2 = polar_to_cartesian([ -base1, base_radius ]);
p2 = polar_to_cartesian([ -pitch1, pitch_radius ]);
o2 = polar_to_cartesian([ -outer1, outer_radius ]);
// ( root_radius > base_radius variables )
pitch_to_root_angle = pitch_to_base_angle - involute_intersect_angle(base_radius, root_radius );
root1 = pitch1 - pitch_to_root_angle;
root2 = -pitch1 + pitch_to_root_angle;
r1_t = polar_to_cartesian([ root1, root_radius ]);
r2_t = polar_to_cartesian([ -root1, root_radius ]);
// ( else )
r1_f = polar_to_cartesian([ base1, root_radius ]);
r2_f = polar_to_cartesian([ -base1, root_radius ]);
if (root_radius > base_radius)
{
//echo("true");
@ -115,7 +115,7 @@ module involute_gear_tooth(
r1_f, b1,p1,o1,o2,p2,b2,r2_f
], convexity = 3);
}
}
// Mathematical Functions
@ -157,7 +157,7 @@ module demo_3d_gears()
translate([0,0,10]) linear_extrude(height = 10, center = true, convexity = 10, twist = 45)
gear(number_of_teeth=17,diametral_pitch=1);
}
//spur gear
translate([0,-50]) linear_extrude(height = 10, center = true, convexity = 10, twist = 0)
gear(number_of_teeth=17,diametral_pitch=1);
@ -170,4 +170,4 @@ module test_involute_curve()
{
translate(polar_to_cartesian([involute_intersect_angle( 0.1,i) , i ])) circle($fn=15, r=0.5);
}
}
}

View file

@ -32,13 +32,13 @@ module test_bevel_gear_pair(){
module test_bevel_gear(){bevel_gear();}
bevel_gear();
//bevel_gear();
pi=3.1415926535897932384626433832795;
//==================================================
// Bevel Gears:
// Two gears with the same cone distance, circular pitch (measured at the cone distance)
// Two gears with the same cone distance, circular pitch (measured at the cone distance)
// and pressure angle will mesh.
module bevel_gear_pair (
@ -49,7 +49,7 @@ module bevel_gear_pair (
{
outside_pitch_radius1 = gear1_teeth * outside_circular_pitch / 360;
outside_pitch_radius2 = gear2_teeth * outside_circular_pitch / 360;
pitch_apex1=outside_pitch_radius2 * sin (axis_angle) +
pitch_apex1=outside_pitch_radius2 * sin (axis_angle) +
(outside_pitch_radius2 * cos (axis_angle) + outside_pitch_radius1) / tan (axis_angle);
cone_distance = sqrt (pow (pitch_apex1, 2) + pow (outside_pitch_radius1, 2));
pitch_apex2 = sqrt (pow (cone_distance, 2) - pow (outside_pitch_radius2, 2));
@ -68,7 +68,7 @@ module bevel_gear_pair (
cone_distance=cone_distance,
pressure_angle=30,
outside_circular_pitch=outside_circular_pitch);
rotate([0,-(pitch_angle1+pitch_angle2),0])
translate([0,0,-pitch_apex2])
bevel_gear (
@ -125,7 +125,7 @@ module bevel_gear (
// Calculate and display the pitch angle. This is needed to determine the angle to mount two meshing cone gears.
// Base Circle for forming the involute teeth shape.
base_radius = back_cone_radius * cos (pressure_angle);
base_radius = back_cone_radius * cos (pressure_angle);
// Diametrial pitch: Number of teeth per unit length.
pitch_diametrial = number_of_teeth / outside_pitch_diameter;
@ -143,9 +143,9 @@ module bevel_gear (
root_cone_full_radius = tan (root_angle)*apex_to_apex;
back_cone_full_radius=apex_to_apex / tan (pitch_angle);
back_cone_end_radius =
outside_pitch_radius -
dedendum * cos (pitch_angle) -
back_cone_end_radius =
outside_pitch_radius -
dedendum * cos (pitch_angle) -
gear_thickness / tan (pitch_angle);
back_cone_descent = dedendum * sin (pitch_angle) + gear_thickness;
@ -158,9 +158,9 @@ module bevel_gear (
face_cone_height = apex_to_apex-face_width / cos (pitch_angle);
face_cone_full_radius = face_cone_height / tan (pitch_angle);
face_cone_descent = dedendum * sin (pitch_angle);
face_cone_end_radius =
face_cone_end_radius =
outside_pitch_radius -
face_width / sin (pitch_angle) -
face_width / sin (pitch_angle) -
face_cone_descent / tan (pitch_angle);
// For the bevel_gear_flat finish option, calculate the height of a cube to select the portion of the gear that includes the full pitch face.
@ -198,7 +198,7 @@ module bevel_gear (
{
translate ([0,0,-back_cone_descent])
cylinder (
$fn=number_of_teeth*2,
$fn=number_of_teeth*2,
r1=back_cone_end_radius,
r2=back_cone_full_radius*2,
h=apex_to_apex + back_cone_descent);
@ -211,7 +211,7 @@ module bevel_gear (
bevel_gear_flat_height]);
}
}
if (finish == bevel_gear_back_cone)
{
translate ([0,0,-face_cone_descent])
@ -223,7 +223,7 @@ module bevel_gear (
translate ([0,0,pitch_apex - apex_to_apex])
cylinder (r=bore_diameter/2,h=apex_to_apex);
}
}
}
module involute_bevel_gear_tooth (
@ -247,9 +247,9 @@ module involute_bevel_gear_tooth (
min_radius = max (base_radius*2,root_radius*2);
pitch_point =
pitch_point =
involute (
base_radius*2,
base_radius*2,
involute_intersect_angle (base_radius*2, back_cone_radius*2));
pitch_angle = atan2 (pitch_point[1], pitch_point[0]);
centre_angle = pitch_angle + half_thick_angle;
@ -310,7 +310,7 @@ module gear (
involute_facets=0,
flat=false)
{
if (circular_pitch==false && diametral_pitch==false)
if (circular_pitch==false && diametral_pitch==false)
echo("MCAD ERROR: gear module needs either a diametral_pitch or circular_pitch");
//Convert diametrial pitch to our native circular pitch
@ -387,7 +387,7 @@ module gear (
circle (r=bore_diameter/2);
if (circles>0)
{
for(i=[0:circles-1])
for(i=[0:circles-1])
rotate([0,0,i*360/circles])
translate([circle_orbit_diameter/2,0,-1])
linear_exturde_flat_option(flat =flat, height=max(gear_thickness,rim_thickness)+3)
@ -488,15 +488,15 @@ function involute_intersect_angle (base_radius, radius) = sqrt (pow (radius/base
// Calculate the involute position for a given base radius and involute angle.
function rotated_involute (rotate, base_radius, involute_angle) =
function rotated_involute (rotate, base_radius, involute_angle) =
[
cos (rotate) * involute (base_radius, involute_angle)[0] + sin (rotate) * involute (base_radius, involute_angle)[1],
cos (rotate) * involute (base_radius, involute_angle)[1] - sin (rotate) * involute (base_radius, involute_angle)[0]
];
function mirror_point (coord) =
function mirror_point (coord) =
[
coord[0],
coord[0],
-coord[1]
];
@ -506,7 +506,7 @@ function rotate_point (rotate, coord) =
cos (rotate) * coord[1] - sin (rotate) * coord[0]
];
function involute (base_radius, involute_angle) =
function involute (base_radius, involute_angle) =
[
base_radius*(cos (involute_angle) + involute_angle*pi/180*sin (involute_angle)),
base_radius*(sin (involute_angle) - involute_angle*pi/180*cos (involute_angle)),
@ -523,7 +523,7 @@ module test_gears()
gear (number_of_teeth=17,
circular_pitch=500,
circles=8);
rotate ([0,0,360*4/17])
translate ([39.088888,0,0])
{
@ -587,7 +587,7 @@ module test_gears()
circles=0);
}
}
rotate ([0,0,360*-5/17])
translate ([44.444444444,0,0])
gear (number_of_teeth=15,
@ -598,7 +598,7 @@ module test_gears()
gear_thickness=4,
hub_thickness=6,
circles=9);
rotate ([0,0,360*-1/17])
translate ([30.5555555,0,-1])
gear (number_of_teeth=5,
@ -612,7 +612,7 @@ module test_gears()
module meshing_double_helix ()
{
test_double_helix_gear ();
mirror ([0,1,0])
translate ([58.33333333,0,0])
test_double_helix_gear (teeth=13,circles=6);
@ -676,7 +676,7 @@ module test_backlash ()
bore_diameter=5,
backlash = 2,
circles=8);
rotate ([0,0,360/teeth/4])
gear (
number_of_teeth = teeth,

View file

@ -4,20 +4,21 @@ from subprocess import Popen, PIPE
mod_re = (r"\bmodule\s+(", r")\s*\(\s*")
func_re = (r"\bfunction\s+(", r")\s*\(")
def extract_mod_names(fpath, name_re=r"\w+"):
regex = name_re.join(mod_re)
def extract_definitions(fpath, name_re=r"\w+", def_re=""):
regex = name_re.join(def_re)
matcher = re.compile(regex)
return (m.group(1) for m in matcher.finditer(fpath.read()))
def extract_mod_names(fpath, name_re=r"\w+"):
return extract_definitions(fpath, name_re=name_re, def_re=mod_re)
def extract_func_names(fpath, name_re=r"\w+"):
regex = name_re.join(func_re)
matcher = re.compile(regex)
return (m.group(1) for m in matcher.finditer(fpath.read()))
return extract_definitions(fpath, name_re=name_re, def_re=func_re)
def collect_test_modules():
dirpath = py.path.local("./")
def collect_test_modules(dirpath=None):
dirpath = dirpath or py.path.local("./")
print "Collecting openscad test module names"
test_files = {}
for fpath in dirpath.visit('*.scad'):
#print fpath
@ -26,21 +27,24 @@ def collect_test_modules():
test_files[fpath] = modules
return test_files
collect_test_modules()
class Timeout(Exception): pass
def call_openscad(path, stlpath, timeout=20):
def call_openscad(path, stlpath, timeout=1):
try:
proc = Popen(['openscad', '-s', str(stlpath), str(path)],
command = ['openscad', '-s', str(stlpath), str(path)]
print command
proc = Popen(command,
stdout=PIPE, stderr=PIPE, close_fds=True)
calltime = time.time()
time.sleep(0.01)
#print calltime
while True:
if proc.poll() is not None:
break
time.sleep(0.1)
time.sleep(0.5)
#print time.time()
if time.time() > calltime + timeout:
raise Exception("Timeout")
raise Timeout()
finally:
try:
proc.terminate()

135
shapes.scad Normal file
View file

@ -0,0 +1,135 @@
/*
* OpenSCAD Shapes Library (www.openscad.org)
* Copyright (C) 2009 Catarina Mota
*
* License: LGPL 2.1 or later
*/
//box(width, height, depth);
//roundedBox(width, height, depth, factor);
//cone(height, radius);
//oval(width, height, depth);
//tube(height, radius, wall);
//ovalTube(width, height, depth, wall);
//hexagon(height, depth);
//octagon(height, depth);
//dodecagon(height, depth);
//hexagram(height, depth);
//rightTriangle(adjacent, opposite, depth);
//equiTriangle(side, depth);
//12ptStar(height, depth);
//----------------------
// size is a vector [w, h, d]
module box(size) {
cube(size, true);
}
// size is a vector [w, h, d]
module roundedBox(size, radius) {
cube(size - [2*radius,0,0], true);
cube(size - [0,2*radius,0], true);
for (x = [radius-size[0]/2, -radius+size[0]/2],
y = [radius-size[1]/2, -radius+size[1]/2]) {
translate([x,y,0]) cylinder(r=radius, h=size[2], center=true);
}
}
module cone(height, radius, center = false) {
cylinder(height, radius, 0, center);
}
module oval(w,h, height, center = false) {
scale([1, h/w, 1]) cylinder(h=height, r=w, center=center);
}
// wall is wall thickness
module tube(height, radius, wall, center = false) {
difference() {
cylinder(h=height, r=radius, center=center);
cylinder(h=height, r=radius-wall, center=center);
}
}
// wall is wall thickness
module ovalTube(height, rx, ry, wall, center = false) {
difference() {
scale([1, ry/rx, 1]) cylinder(h=height, r=rx, center=center);
scale([(rx-wall)/rx, (ry-wall)/rx, 1]) cylinder(h=height, r=rx, center=center);
}
}
// size is the XY plane size, height in Z
module hexagon(size, height) {
boxWidth = size/1.75;
for (r = [-60, 0, 60]) rotate([0,0,r]) cube([boxWidth, size, height], true);
}
// size is the XY plane size, height in Z
module octagon(size, height) {
intersection() {
cube([size, size, height], true);
rotate([0,0,45]) cube([size, size, height], true);
}
}
// size is the XY plane size, height in Z
module dodecagon(size, height) {
intersection() {
hexagon(size, height);
rotate([0,0,90]) hexagon(size, height);
}
}
// size is the XY plane size, height in Z
module hexagram(size, height) {
boxWidth=size/1.75;
for (v = [[0,1],[0,-1],[1,-1]]) {
intersection() {
rotate([0,0,60*v[0]]) cube([size, boxWidth, height], true);
rotate([0,0,60*v[1]]) cube([size, boxWidth, height], true);
}
}
}
module rightTriangle(adjacent, opposite, height) {
difference() {
translate([-adjacent/2,opposite/2,0]) cube([adjacent, opposite, height], true);
translate([-adjacent,0,0]) {
rotate([0,0,atan(opposite/adjacent)]) dislocateBox(adjacent*2, opposite, height);
}
}
}
module equiTriangle(side, height) {
difference() {
translate([-side/2,side/2,0]) cube([side, side, height], true);
rotate([0,0,30]) dislocateBox(side*2, side, height);
translate([-side,0,0]) {
rotate([0,0,60]) dislocateBox(side*2, side, height);
}
}
}
module 12ptStar(size, height) {
starNum = 3;
starAngle = 360/starNum;
for (s = [1:starNum]) {
rotate([0, 0, s*starAngle]) cube([size, size, height], true);
}
}
//-----------------------
//MOVES THE ROTATION AXIS OF A BOX FROM ITS CENTER TO THE BOTTOM LEFT CORNER
//FIXME: Why are the dimensions changed?
// why not just translate([0,0,-d/2]) cube([w,h,d]);
module dislocateBox(w,h,d) {
translate([w/2,h,0]) {
difference() {
cube([w, h*2, d+1]);
translate([-w,0,0]) cube([w, h*2, d+1]);
}
}
}

View file

@ -2,21 +2,22 @@ import py
from openscad_utils import *
def pytest_generate_tests(metafunc):
if "modpath" in metafunc.funcargnames:
if "modname" in metafunc.funcargnames:
for fpath, modnames in collect_test_modules().items():
for modname in modnames:
metafunc.addcall(funcargs=dict(modname=modname, modpath=fpath))
else:
dirpath = py.path.local("./")
for fpath in dirpath.visit('*.scad'):
metafunc.addcall(funcargs=dict(modpath=fpath))
temppath = py.test.ensuretemp('MCAD')
def pytest_generate_tests(metafunc):
if "modpath" in metafunc.funcargnames:
for fpath, modnames in collect_test_modules().items():
os.system("cp %s %s/" % (fpath, temppath))
if "modname" in metafunc.funcargnames:
for modname in modnames:
metafunc.addcall(funcargs=dict(modname=modname, modpath=fpath))
else:
metafunc.addcall(funcargs=dict(modpath=fpath))
def test_compile(modname, modpath):
tempname = "test_" + modpath.basename + modname
tempname = "test_" + modpath.basename + modname + '.scad'
fpath = temppath.join(tempname)
stlpath = temppath.join(tempname + ".stl")
f = fpath.open('w')
@ -24,10 +25,10 @@ def test_compile(modname, modpath):
//generated testfile
include <%s>
%s()
%s();
""" % (modpath, modname))
f.flush
output = call_openscad(path=fpath, stlpath=stlpath)
output = call_openscad(path=fpath, stlpath=stlpath, timeout=5)
print output
assert output[0] is 0
assert "warning" or "error" not in output[2].strip().lowercase()
@ -40,5 +41,6 @@ def test_compile_default(modpath):
print output
assert output[0] is 0
assert "warning" or "error" not in output[2].strip().lowercase()
assert len(stlpath.readlines()) == 2

View file

@ -7,14 +7,12 @@
* License: LGPL 2.1
*/
/**
* Standard right-angled triangle
*
* @param number o_len Lenght of the opposite side
* @param number a_len Lenght of the adjacent side
* @param number depth How wide/deep the triangle is in the 3rd dimension
* @todo a better way ?
*/
module triangle(o_len, a_len, depth)
{