2011-11-21 11:50:16 -06:00
|
|
|
// Enhancement of OpenSCAD Primitives Solid with Trinagles
|
|
|
|
// Copyright (C) 2011 Rene BAUMANN, Switzerland
|
|
|
|
//
|
|
|
|
// This library is free software; you can redistribute it and/or
|
|
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
|
|
// License as published by the Free Software Foundation; either
|
|
|
|
// version 2.1 of the License, or (at your option) any later version.
|
|
|
|
//
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
// Lesser General Public License for more details.
|
|
|
|
//
|
|
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
|
|
// License along with this library; If not, see <http://www.gnu.org/licenses/>
|
|
|
|
// or write to the Free Software Foundation, Inc.,
|
|
|
|
// 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
// ================================================================
|
|
|
|
//
|
|
|
|
// File providing functions and modules to draw 3D - triangles
|
|
|
|
// created in the X-Y plane with hight h, using various triangle
|
|
|
|
// specification methods.
|
|
|
|
// Standard traingle geometrical definition is used. Vertices are named A,B,C,
|
|
|
|
// side a is opposite vertex A a.s.o. the angle at vertex A is named alpha,
|
|
|
|
// B(beta), C(gamma).
|
|
|
|
//
|
|
|
|
// This SW is a contribution to the Free Software Community doing a marvelous
|
|
|
|
// job of giving anyone access to knowledge and tools to educate himselfe.
|
|
|
|
//
|
|
|
|
// Author: Rene Baumann
|
|
|
|
// Date: 11.09.2011
|
|
|
|
// Edition: 0.3 11.09.2011 For review by Marius
|
|
|
|
// Edition: 0.4 11.11.2011 Ref to GPL2.1 added
|
|
|
|
//
|
|
|
|
// --------------------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// ===========================================
|
|
|
|
//
|
|
|
|
// FUNCTION: 3dtri_sides2coord
|
|
|
|
// DESCRIPTION:
|
|
|
|
// Enter triangle sides a,b,c and to get the A,B,C - corner
|
|
|
|
// co-ordinates. The trinagle's c-side lies on the x-axis
|
|
|
|
// and A-corner in the co-ordinates center [0,0,0]. Geometry rules
|
|
|
|
// required that a + b is greater then c. The traingle's vertices are
|
|
|
|
// computed such that it is located in the X-Y plane, side c is on the
|
|
|
|
// positive x-axis.
|
|
|
|
// PARAMETER:
|
|
|
|
// a : real length of side a
|
|
|
|
// b : real length of side b
|
|
|
|
// c : real length of side c
|
|
|
|
// RETURNS:
|
|
|
|
// vertices : [Acord,Bcord,Ccord] Array of vertices coordinates
|
|
|
|
//
|
|
|
|
// COMMENT:
|
|
|
|
// vertices = 3dtri_sides2coord (3,4,5);
|
|
|
|
// vertices[0] : Acord vertex A cordinates the like [x,y,z]
|
|
|
|
// -------------------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
function 3dtri_sides2coord (a,b,c) = [
|
|
|
|
[0,0,0],
|
|
|
|
[c,0,0],
|
|
|
|
[(pow(c,2)+pow(a,2)-pow(b,2))/(2*c),sqrt ( pow(a,2) -
|
|
|
|
pow((pow(c,2)+pow(a,2)-pow(b,2))/(2*c),2)),0]];
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// ===========================================
|
|
|
|
//
|
|
|
|
// FUNCTION: 3dtri_centerOfGravityCoord
|
|
|
|
// DESCRIPTION:
|
|
|
|
// Enter triangle A,B,C - corner coordinates to get the
|
|
|
|
// triangles Center of Gravity coordinates. It is assumed
|
|
|
|
// the triangle is parallel to the X-Y plane. The function
|
|
|
|
// returns always zero for the z-coordinate
|
|
|
|
// PARAMETER:
|
|
|
|
// Acord : [x,y,z] Coordinates of vertex A
|
|
|
|
// Bcord : [x,y,z] Coordinates of vertex B
|
|
|
|
// Ccord : [x,y,z] Coordinates of vertex C
|
|
|
|
// RETURNS:
|
|
|
|
// CG : [x,y,0] Center of gravity coordinate in X-Y-plane
|
|
|
|
//
|
|
|
|
// COMMENT:
|
|
|
|
// vertices = 3dtri_sides2coord (3,4,5);
|
|
|
|
// cg = 3dtri_centerOfGravityCoord(vertices[0],vertices[1],vertices[2]);
|
|
|
|
// -------------------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
function 3dtri_centerOfGravityCoord (Acord,Bcord,Ccord) = [
|
|
|
|
(Acord[0]+Bcord[0]+Ccord[0])/3,(Acord[1]+Bcord[1]+Ccord[1])/3,0];
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// ===========================================
|
|
|
|
//
|
|
|
|
// FUNCTION: 3dtri_centerOfcircumcircle
|
|
|
|
// DESCRIPTION:
|
|
|
|
// Enter triangle A,B,C - corner coordinates to get the
|
|
|
|
// circum circle coordinates. It is assumed
|
|
|
|
// the triangle is parallel to the X-Y plane. The function
|
|
|
|
// returns always zero for the z-coordinate
|
|
|
|
// PARAMETER:
|
|
|
|
// Acord : [x,y,z] Coordinates of vertex A
|
|
|
|
// Bcord : [x,y,z] Coordinates of vertex B
|
|
|
|
// Ccord : [x,y,z] Coordinates of vertex C
|
|
|
|
// RETURNS:
|
|
|
|
// cc : [x,y,0] Circumcircle center
|
|
|
|
//
|
|
|
|
// COMMENT:
|
|
|
|
// vertices = 3dtri_sides2coord (3,4,5);
|
|
|
|
// cc = 3dtri_centerOfcircumcircle (vertices[0],vertices[1],vertices[2]);
|
|
|
|
// -------------------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
function 3dtri_centerOfcircumcircle (Acord,Bcord,Ccord) =
|
|
|
|
[0.5*Bcord[0],
|
|
|
|
0.5*((pow(Ccord[1],2)+pow(Ccord[0],2)-Bcord[0]*Ccord[0])/Ccord[1]),
|
|
|
|
0];
|
|
|
|
//
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// ===========================================
|
|
|
|
//
|
|
|
|
// FUNCTION: 3dtri_radiusOfcircumcircle
|
|
|
|
// DESCRIPTION:
|
|
|
|
// Provides the triangle's radius from circumcircle to the vertices.
|
|
|
|
// It is assumed the triangle is parallel to the X-Y plane. The function
|
|
|
|
// returns always zero for the z-coordinate
|
|
|
|
// PARAMETER:
|
|
|
|
// Vcord : [x,y,z] Coordinates of a vertex A or B,C
|
|
|
|
// CCcord : [x,y,z] Coordinates of circumcircle
|
|
|
|
// r : Radius at vertices if round corner triangle used,
|
|
|
|
// else enter "0"
|
|
|
|
// RETURNS:
|
|
|
|
// cr : Circumcircle radius
|
|
|
|
//
|
|
|
|
// COMMENT: Calculate circumcircle radius of trinagle with round vertices having
|
|
|
|
// radius R = 2
|
|
|
|
// vertices = 3dtri_sides2coord (3,4,5);
|
|
|
|
// cc = 3dtri_centerOfcircumcircle (vertices[0],vertices[1],vertices[2]);
|
|
|
|
// cr = 3dtri_radiusOfcircumcircle (vertices[0],cc,2);
|
|
|
|
// -------------------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
function 3dtri_radiusOfcircumcircle (Vcord,CCcord,R) =
|
|
|
|
sqrt(pow(CCcord[0]-Vcord[0],2)+pow(CCcord[1]-Vcord[1],2))+ R;
|
|
|
|
//
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// ===========================================
|
|
|
|
//
|
|
|
|
// FUNCTION: 3dtri_radiusOfIn_circle
|
|
|
|
// DESCRIPTION:
|
|
|
|
// Enter triangle A,B,C - corner coordinates to get the
|
|
|
|
// in-circle radius. It is assumed the triangle is parallel to the
|
|
|
|
// X-Y plane. The function always returns zero for the z-coordinate.
|
|
|
|
// Formula used for inner circle radius: r = 2A /(a+b+c)
|
|
|
|
// PARAMETER:
|
|
|
|
// Acord : [x,y,z] Coordinates of vertex A
|
|
|
|
// Bcord : [x,y,z] Coordinates of vertex B
|
|
|
|
// Ccord : [x,y,z] Coordinates of vertex C
|
|
|
|
//
|
|
|
|
// RETURNS:
|
|
|
|
// ir : real radius of in-circle
|
|
|
|
//
|
|
|
|
// COMMENT:
|
|
|
|
// vertices = 3dtri_sides2coord (3,4,5);
|
|
|
|
// ir = 3dtri_radiusOfIn_circle (vertices[0],vertices[1],vertices[2]);
|
|
|
|
// -------------------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
function 3dtri_radiusOfIn_circle (Acord,Bcord,Ccord) =
|
|
|
|
Bcord[0]*Ccord[1]/(Bcord[0]+sqrt(pow(Ccord[0]-Bcord[0],2)+pow(Ccord[1],2))+
|
|
|
|
sqrt(pow(Ccord[0],2)+pow(Ccord[1],2)));
|
|
|
|
//
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// ===========================================
|
|
|
|
//
|
|
|
|
// FUNCTION: 3dtri_centerOfIn_circle
|
|
|
|
// DESCRIPTION:
|
|
|
|
// Enter triangle A,B,C - corner coordinates to get the
|
|
|
|
// in-circle coordinates. It is assumed
|
|
|
|
// the triangle is parallel to the X-Y plane. The function
|
|
|
|
// returns always zero for the z-coordinate
|
|
|
|
// PARAMETER:
|
|
|
|
// Acord : [x,y,z] Coordinates of vertex A
|
|
|
|
// Bcord : [x,y,z] Coordinates of vertex B
|
|
|
|
// Ccord : [x,y,z] Coordinates of vertex C
|
|
|
|
// r : real radius of in-circle
|
|
|
|
// RETURNS:
|
|
|
|
// ic : [x,y,0] In-circle center co-ordinates
|
|
|
|
//
|
|
|
|
// COMMENT:
|
|
|
|
// vertices = 3dtri_sides2coord (3,4,5);
|
|
|
|
// ir = 3dtri_radiusOfIn_circle (vertices[0],vertices[1],vertices[2]);
|
|
|
|
// ic = 3dtri_centerOfIn_circle (vertices[0],vertices[1],vertices[2],ir);
|
|
|
|
// -------------------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
function 3dtri_centerOfIn_circle (Acord,Bcord,Ccord,r) =
|
|
|
|
[(Bcord[0]+sqrt(pow(Ccord[0]-Bcord[0],2)+pow(Ccord[1],2))+
|
|
|
|
sqrt(pow(Ccord[0],2)+pow(Ccord[1],2)))/2-sqrt(pow(Ccord[0]-Bcord[0],2)+pow(Ccord[1],2)),r,0];
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// ============================================
|
|
|
|
//
|
|
|
|
// MODULE: 3dtri_draw
|
|
|
|
// DESCRIPTION:
|
|
|
|
// Draw a standard solid triangle with A,B,C - vertices specified by its
|
|
|
|
// co-ordinates and height "h", as given by the input parameters.
|
|
|
|
// PARAMETER:
|
|
|
|
// Acord : [x,y,z] Coordinates of vertex A
|
|
|
|
// Bcord : [x,y,z] Coordinates of vertex B
|
|
|
|
// Ccord : [x,y,z] Coordinates of vertex C
|
|
|
|
// h : real Hight of the triangle
|
|
|
|
// RETURNS:
|
|
|
|
// none
|
|
|
|
//
|
|
|
|
// COMMENT:
|
|
|
|
// You might use the result from function 3dtri_sides2coord
|
|
|
|
// to call module 3dtri_draw ( vertices[0],vertices[1],vertices[2], h)
|
|
|
|
// -------------------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
module 3dtri_draw ( Acord, Bcord, Ccord, h) {
|
|
|
|
polyhedron (points=[Acord,Bcord,Ccord,
|
|
|
|
Acord+[0,0,h],Bcord+[0,0,h],Ccord+[0,0,h]],
|
|
|
|
triangles=[ [0,1,2],[0,2,3],[3,2,5],
|
|
|
|
[3,5,4],[1,5,2],[4,5,1],
|
|
|
|
[4,1,0],[0,3,4]]);
|
|
|
|
|
|
|
|
};
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// ==============================================
|
|
|
|
//
|
|
|
|
// MODULE: 3dtri_rnd_draw
|
|
|
|
// DESCRIPTION:
|
|
|
|
// Draw a round corner triangle with A,B,C - vertices specified by its
|
|
|
|
// co-ordinates, height h and round vertices having radius "r".
|
|
|
|
// As specified by the input parameters.
|
|
|
|
// Please note, the tringles side lenght gets extended by "2 * r",
|
|
|
|
// and the vertices coordinates define the centers of the
|
|
|
|
// circles with radius "r".
|
|
|
|
// PARAMETER:
|
|
|
|
// Acord : [x,y,z] Coordinates of vertex A
|
|
|
|
// Bcord : [x,y,z] Coordinates of vertex B
|
|
|
|
// Ccord : [x,y,z] Coordinates of vertex C
|
|
|
|
// h : real Hight of the triangle
|
|
|
|
// r : real Radius from vertices coordinates
|
|
|
|
// RETURNS:
|
|
|
|
// none
|
|
|
|
//
|
|
|
|
// COMMENT:
|
|
|
|
// You might use the result from function 3dtri_sides2coord
|
|
|
|
// to call module 3dtri_rnd_draw ( vertices[0],vertices[1],vertices[2], h, r)
|
|
|
|
// -------------------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
module 3dtri_rnd_draw ( Acord, Bcord, Ccord, h, r) {
|
|
|
|
Avect=Ccord-Bcord; // vector pointing from vertex B to vertex C
|
|
|
|
p0=Acord + [0,-r,0];
|
|
|
|
p1=Bcord + [0,-r,0];
|
|
|
|
p2=Bcord + [r*Avect[1]/sqrt(pow(Avect[0],2)+pow(Avect[1],2)),
|
|
|
|
-r*Avect[0]/sqrt(pow(Avect[0],2)+pow(Avect[1],2)) ,0];
|
|
|
|
p3=Ccord + [r*Avect[1]/sqrt(pow(Avect[0],2)+pow(Avect[1],2)),
|
|
|
|
-r*Avect[0]/sqrt(pow(Avect[0],2)+pow(Avect[1],2)) ,0];
|
|
|
|
p4=Ccord +[- r*Ccord[1]/sqrt(pow(Ccord[0],2)+pow(Ccord[1],2)),
|
|
|
|
r*Ccord[0]/sqrt(pow(Ccord[0],2)+pow(Ccord[1],2)) ,0];
|
|
|
|
p5=Acord + [- r*Ccord[1]/sqrt(pow(Ccord[0],2)+pow(Ccord[1],2)),
|
|
|
|
r*Ccord[0]/sqrt(pow(Ccord[0],2)+pow(Ccord[1],2)) ,0];
|
|
|
|
bottom_triangles = [[0,1,2],[0,2,3],[0,3,4],[0,4,5]];
|
|
|
|
c_side_triangles = [[7,1,0],[0,6,7]];
|
|
|
|
a_side_triangles = [[2,8,3],[8,9,3]];
|
|
|
|
b_side_triangles = [[4,10,5],[10,11,5]];
|
|
|
|
A_edge_triangles = [[0,5,11],[0,11,6]];
|
|
|
|
B_edge_triangles = [[1,7,2],[2,7,8]];
|
|
|
|
C_edge_triangles = [[3,9,4],[9,10,4]];
|
|
|
|
top_triangles = [[11,7,6],[11,8,7],[11,10,8],[8,10,9]];
|
|
|
|
union () {
|
|
|
|
polyhedron (points=[p0,p1,p2,p3,p4,p5,
|
|
|
|
p0+[0,0,h],p1+[0,0,h],p2+[0,0,h],p3+[0,0,h],p4+[0,0,h],p5+[0,0,h]],
|
|
|
|
triangles=[ bottom_triangles[0],bottom_triangles[1],bottom_triangles[2],bottom_triangles[3],
|
|
|
|
A_edge_triangles[0],A_edge_triangles[1],
|
|
|
|
c_side_triangles[0],c_side_triangles[1],
|
|
|
|
B_edge_triangles[0],B_edge_triangles[1],
|
|
|
|
a_side_triangles[0],a_side_triangles[1],
|
|
|
|
C_edge_triangles[0],C_edge_triangles[1],
|
|
|
|
b_side_triangles[0],b_side_triangles[1],
|
|
|
|
top_triangles[0],top_triangles[1],top_triangles[2],top_triangles[3]]);
|
|
|
|
translate(Acord) cylinder(r1=r,r2=r,h=h,center=false);
|
|
|
|
translate(Bcord) cylinder(r1=r,r2=r,h=h,center=false);
|
|
|
|
translate(Ccord) cylinder(r1=r,r2=r,h=h,center=false);
|
|
|
|
};
|
|
|
|
}
|
|
|
|
//
|
|
|
|
// ==============================================
|
|
|
|
//
|
|
|
|
// Demo Application - copy into new file and uncomment or uncomment here but
|
|
|
|
// without uncommenting the use <...> statement, then press F6 - Key
|
|
|
|
//
|
2012-02-02 16:32:15 -06:00
|
|
|
// use <MCAD/3d_triangle.scad>;
|
2011-11-21 11:50:16 -06:00
|
|
|
//$fn=50;
|
|
|
|
// h =4;
|
|
|
|
// r=2;
|
|
|
|
// echo ("Draws a right angle triangle with its circumcircle and in-circle");
|
|
|
|
// echo ("The calculated co-ordinates and radius are show in this console window");
|
|
|
|
// echo ("Geometry rules for a right angle triangle say, that the circumcircle is the");
|
|
|
|
// echo ("Thales Circle which center must be in the middle of the triangle's c - side");
|
|
|
|
// echo ("===========================================");
|
|
|
|
// vertices = 3dtri_sides2coord (30,40,50);
|
|
|
|
// echo("A = ",vertices[0]," B = ",vertices[1]," C = ",vertices[2]);
|
|
|
|
// cg = 3dtri_centerOfGravityCoord (vertices[0],vertices[1],vertices[2]);
|
|
|
|
// echo (" Center of gravity = ",cg);
|
|
|
|
// cc = 3dtri_centerOfcircumcircle (vertices[0],vertices[1],vertices[2]);
|
|
|
|
// echo (" Center of circumcircle = ",cc);
|
|
|
|
// cr = 3dtri_radiusOfcircumcircle (vertices[0],cc,r);
|
|
|
|
// echo(" Radius of circumcircle ",cr);
|
|
|
|
// ir = 3dtri_radiusOfIn_circle (vertices[0],vertices[1],vertices[2]);
|
|
|
|
// echo (" Radius of in-circle = ",ir);
|
|
|
|
// ic = 3dtri_centerOfIn_circle (vertices[0],vertices[1],vertices[2],ir);
|
|
|
|
// echo (" Center of in-circle = ",ic);
|
|
|
|
// translate(cc+[0,0,5*h/2]) difference () {
|
|
|
|
// cylinder (h=5*h,r1=cr+4,r2=cr+4,center=true);
|
|
|
|
// cylinder (h=6*h,r1=cr,r2=cr,center=true);}
|
|
|
|
// difference () {
|
|
|
|
// union () {
|
|
|
|
// difference () {
|
|
|
|
// 3dtri_rnd_draw (vertices[0], vertices[1], vertices[2],5*h,r);
|
|
|
|
// scale([0.8,0.8,1]) translate([6,2,4*h]) 3dtri_rnd_draw (vertices[0], vertices[1], vertices[2],5*h,r);
|
|
|
|
// }
|
|
|
|
// translate (ic+[0,0,5*h]) cylinder(h=10*h,r1=ir+r,r2=ir+r,center=true);
|
|
|
|
// }
|
|
|
|
// translate (ic+[0,0,5*h]) cylinder(h=12*h,r1=0.5*ir,r2=0.5*ir,center=true);
|
|
|
|
// }
|
|
|
|
|