Finish arm base

This commit is contained in:
Kaan Barmore-Genç 2023-12-24 13:37:46 -06:00
parent 1a4ae271a7
commit 521eebca77
Signed by: kaan
GPG Key ID: B2E280771CD62FCF
2 changed files with 327 additions and 291 deletions

View File

@ -1,286 +1,286 @@
module threadPiece(Xa, Ya, Za, Xb, Yb, Zb, radiusa, radiusb, tipRatioa, tipRatiob, threadAngleTop, threadAngleBottom)
{
angleZ=atan2(Ya, Xa);
twistZ=atan2(Yb, Xb)-atan2(Ya, Xa);
polyPoints=[
[Xa+ radiusa*cos(+angleZ), Ya+ radiusa*sin(+angleZ), Za ],
[Xa+ radiusa*cos(+angleZ), Ya+ radiusa*sin(+angleZ), Za + radiusa*tipRatioa ],
[Xa , Ya , Za+ radiusa*(tipRatioa+sin(threadAngleTop)) ],
[Xa , Ya , Za ],
[Xa , Ya , Za+ radiusa*sin(threadAngleBottom) ],
[Xb+ radiusb*cos(angleZ+twistZ), Yb+ radiusb*sin(angleZ+twistZ), Zb ],
[Xb+ radiusb*cos(angleZ+twistZ), Yb+ radiusb*sin(angleZ+twistZ), Zb+ radiusb*tipRatiob ],
[Xb , Yb , Zb+ radiusb*(tipRatiob+sin(threadAngleTop)) ],
[Xb , Yb , Zb ],
[Xb , Yb , Zb+ radiusb*sin(threadAngleBottom)] ];
polyTriangles=[
[ 0, 1, 6 ], [ 0, 6, 5 ], // tip of profile
[ 1, 7, 6 ], [ 1, 2, 7 ], // upper side of profile
[ 0, 5, 4 ], [ 4, 5, 9 ], // lower side of profile
[ 4, 9, 3 ], [ 9, 8, 3 ], [ 3, 8, 2 ], [ 8, 7, 2 ], // back of profile
[ 0, 4, 3 ], [ 0, 3, 2 ], [ 0, 2, 1 ], // a side of profile
[ 5, 8, 9 ], [ 5, 7, 8 ], [ 5, 6, 7 ] // b side of profile
];
polyhedron( polyPoints, polyTriangles );
}
module shaftPiece(Xa, Ya, Za, Xb, Yb, Zb, radiusa, radiusb, tipRatioa, tipRatiob, threadAngleTop, threadAngleBottom)
{
angleZ=atan2(Ya, Xa);
twistZ=atan2(Yb, Xb)-atan2(Ya, Xa);
threadAngleTop=15;
threadAngleBottom=-15;
shaftRatio=0.5;
polyPoints1=[
[Xa, Ya, Za + radiusa*sin(threadAngleBottom) ],
[Xa, Ya, Za + radiusa*(tipRatioa+sin(threadAngleTop)) ],
[Xa*shaftRatio, Ya*shaftRatio , Za + radiusa*(tipRatioa+sin(threadAngleTop)) ],
[Xa*shaftRatio , Ya*shaftRatio , Za ],
[Xa*shaftRatio , Ya*shaftRatio , Za + radiusa*sin(threadAngleBottom) ],
[Xb, Yb, Zb + radiusb*sin(threadAngleBottom) ],
[Xb, Yb, Zb + radiusb*(tipRatiob+sin(threadAngleTop)) ],
[Xb*shaftRatio , Yb*shaftRatio , Zb + radiusb*(tipRatiob+sin(threadAngleTop)) ],
[Xb*shaftRatio , Yb*shaftRatio , Zb ],
[Xb*shaftRatio , Yb*shaftRatio , Zb + radiusb*sin(threadAngleBottom) ] ];
polyTriangles1=[
[ 0, 1, 6 ], [ 0, 6, 5 ], // tip of profile
[ 1, 7, 6 ], [ 1, 2, 7 ], // upper side of profile
[ 0, 5, 4 ], [ 4, 5, 9 ], // lower side of profile
[ 3, 4, 9 ], [ 9, 8, 3 ], [ 2, 3, 8 ], [ 8, 7, 2 ], // back of profile
[ 0, 4, 3 ], [ 0, 3, 2 ], [ 0, 2, 1 ], // a side of profile
[ 5, 8, 9 ], [ 5, 7, 8 ], [ 5, 6, 7 ] // b side of profile
];
// this is the back of the raised part of the profile
polyhedron( polyPoints1, polyTriangles1 );
}
module trapezoidThread(
length=45, // axial length of the threaded rod
pitch=10, // axial distance from crest to crest
pitchRadius=10, // radial distance from center to mid-profile
threadHeightToPitch=0.5, // ratio between the height of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
profileRatio=0.5, // ratio between the lengths of the raised part of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
threadAngle=30, // angle between the two faces of the thread
// std value for Acme is 29 or for metric lead screw is 30
RH=true, // true/false the thread winds clockwise looking along shaft, i.e.follows the Right Hand Rule
clearance=0.1, // radial clearance, normalized to thread height
backlash=0.1, // axial clearance, normalized to pitch
stepsPerTurn=24 // number of slices to create per turn
)
{
numberTurns=length/pitch;
steps=stepsPerTurn*numberTurns;
trapezoidRatio= 2*profileRatio*(1-backlash);
function threadAngleTop(i)= threadAngle/2;
function threadAngleBottom(i)= -threadAngle/2;
function threadHeight(i)= pitch*threadHeightToPitch;
function pitchRadius(i)= pitchRadius;
function minorRadius(i)= pitchRadius(i)-0.5*threadHeight(i);
function X(i)= minorRadius(i)*cos(i*360*numberTurns);
function Y(i)= minorRadius(i)*sin(i*360*numberTurns);
function Z(i)= pitch*numberTurns*i;
function tip(i)= trapezoidRatio*(1-0.5*sin(threadAngleTop(i))+0.5*sin(threadAngleBottom(i)));
// this is the threaded rod
if (RH==true)
translate([0,0,-threadHeight(0)*sin(threadAngleBottom(0))])
for (i=[0:steps-1])
{
threadPiece(
Xa= X(i/steps),
Ya= Y(i/steps),
Za= Z(i/steps),
Xb= X((i+1)/steps),
Yb= Y((i+1)/steps),
Zb= Z((i+1)/steps),
radiusa= threadHeight(i/steps),
radiusb= threadHeight((i+1)/steps),
tipRatioa= tip(i/steps),
tipRatiob= tip((i+1)/steps),
threadAngleTop= threadAngleTop(i),
threadAngleBottom= threadAngleBottom(i)
);
shaftPiece(
Xa= X(i/steps),
Ya= Y(i/steps),
Za= Z(i/steps),
Xb= X((i+1)/steps),
Yb= Y((i+1)/steps),
Zb= Z((i+1)/steps),
radiusa= threadHeight(i/steps),
radiusb= threadHeight((i+1)/steps),
tipRatioa= tip(i/steps),
tipRatiob= tip((i+1)/steps),
threadAngleTop= threadAngleTop(i),
threadAngleBottom= threadAngleBottom(i)
);
}
if (RH==false)
translate([0,0,-threadHeight(0)*sin(threadAngleBottom(0))])
mirror([0,1,0])
for (i=[0:steps-1])
{
threadPiece(
Xa= X(i/steps),
Ya= Y(i/steps),
Za= Z(i/steps),
Xb= X((i+1)/steps),
Yb= Y((i+1)/steps),
Zb= Z((i+1)/steps),
radiusa= threadHeight(i/steps),
radiusb= threadHeight((i+1)/steps),
tipRatioa= tip(i/steps),
tipRatiob= tip((i+1)/steps),
threadAngleTop= threadAngleTop(i),
threadAngleBottom= threadAngleBottom(i)
);
shaftPiece(
Xa= X(i/steps),
Ya= Y(i/steps),
Za= Z(i/steps),
Xb= X((i+1)/steps),
Yb= Y((i+1)/steps),
Zb= Z((i+1)/steps),
radiusa= threadHeight(i/steps),
radiusb= threadHeight((i+1)/steps),
tipRatioa= tip(i/steps),
tipRatiob= tip((i+1)/steps),
threadAngleTop= threadAngleTop(i),
threadAngleBottom= threadAngleBottom(i)
);
}
rotate([0,0,180/stepsPerTurn])
cylinder(
h=length+threadHeight(1)*(tip(1)+sin( threadAngleTop(1) )-1*sin( threadAngleBottom(1) ) ),
r1=minorRadius(0)-clearance*threadHeight(0),
r2=minorRadius(0)-clearance*threadHeight(0),
$fn=stepsPerTurn
);
}
module trapezoidThreadNegativeSpace(
length=45, // axial length of the threaded rod
pitch=10, // axial distance from crest to crest
pitchRadius=10, // radial distance from center to mid-profile
threadHeightToPitch=0.5, // ratio between the height of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
profileRatio=0.5, // ratio between the lengths of the raised part of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
threadAngle=30, // angle between the two faces of the thread
// std value for Acme is 29 or for metric lead screw is 30
RH=true, // true/false the thread winds clockwise looking along shaft, i.e.follows the Right Hand Rule
countersunk=0, // depth of 45 degree chamfered entries, normalized to pitch
clearance=0.1, // radial clearance, normalized to thread height
backlash=0.1, // axial clearance, normalized to pitch
stepsPerTurn=24 // number of slices to create per turn
)
{
translate([0,0,-countersunk*pitch])
cylinder(
h=2*countersunk*pitch,
r2=pitchRadius+clearance*pitch+0.25*pitch,
r1=pitchRadius+clearance*pitch+0.25*pitch+2*countersunk*pitch,
$fn=24
);
translate([0,0,countersunk*pitch])
translate([0,0,-pitch])
trapezoidThread(
length=length+0.5*pitch, // axial length of the threaded rod
pitch=pitch, // axial distance from crest to crest
pitchRadius=pitchRadius+clearance*pitch, // radial distance from center to mid-profile
threadHeightToPitch=threadHeightToPitch, // ratio between the height of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
profileRatio=profileRatio, // ratio between the lengths of the raised part of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
threadAngle=threadAngle, // angle between the two faces of the thread
// std value for Acme is 29 or for metric lead screw is 30
RH=true, // true/false the thread winds clockwise looking along shaft
// i.e.follows Right Hand Rule
clearance=0, // radial clearance, normalized to thread height
backlash=-backlash, // axial clearance, normalized to pitch
stepsPerTurn=stepsPerTurn // number of slices to create per turn
);
translate([0,0,length-countersunk*pitch])
cylinder(
h=2*countersunk*pitch,
r1=pitchRadius+clearance*pitch+0.25*pitch,
r2=pitchRadius+clearance*pitch+0.25*pitch+2*countersunk*pitch,$fn=24,
$fn=24
);
}
module trapezoidNut(
length=45, // axial length of the threaded rod
radius=25, // outer radius of the nut
pitch=10, // axial distance from crest to crest
pitchRadius=10, // radial distance from center to mid-profile
threadHeightToPitch=0.5, // ratio between the height of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
profileRatio=0.5, // ratio between the lengths of the raised part of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
threadAngle=30, // angle between the two faces of the thread
// std value for Acme is 29 or for metric lead screw is 30
RH=true, // true/false the thread winds clockwise looking along shaft, i.e.follows the Right Hand Rule
countersunk=0, // depth of 45 degree chamfered entries, normalized to pitch
clearance=0.1, // radial clearance, normalized to thread height
backlash=0.1, // axial clearance, normalized to pitch
stepsPerTurn=24 // number of slices to create per turn
)
{
difference()
{
cylinder(
h=length,
r1=radius,
r2=radius,
$fn=6
);
trapezoidThreadNegativeSpace(
length=length, // axial length of the threaded rod
pitch=pitch, // axial distance from crest to crest
pitchRadius=pitchRadius, // radial distance from center to mid-profile
threadHeightToPitch=threadHeightToPitch, // ratio between the height of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
profileRatio=profileRatio, // ratio between the lengths of the raised part of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
threadAngle=threadAngle, // angle between the two faces of the thread
// std value for Acme is 29 or for metric lead screw is 30
RH=true, // true/false the thread winds clockwise looking along shaft
// i.e.follows Right Hand Rule
countersunk=countersunk, // depth of 45 degree countersunk entries, normalized to pitch
clearance=clearance, // radial clearance, normalized to thread height
backlash=backlash, // axial clearance, normalized to pitch
stepsPerTurn=stepsPerTurn // number of slices to create per turn
);
}
module threadPiece(Xa, Ya, Za, Xb, Yb, Zb, radiusa, radiusb, tipRatioa, tipRatiob, threadAngleTop, threadAngleBottom)
{
angleZ=atan2(Ya, Xa);
twistZ=atan2(Yb, Xb)-atan2(Ya, Xa);
polyPoints=[
[Xa+ radiusa*cos(+angleZ), Ya+ radiusa*sin(+angleZ), Za ],
[Xa+ radiusa*cos(+angleZ), Ya+ radiusa*sin(+angleZ), Za + radiusa*tipRatioa ],
[Xa , Ya , Za+ radiusa*(tipRatioa+sin(threadAngleTop)) ],
[Xa , Ya , Za ],
[Xa , Ya , Za+ radiusa*sin(threadAngleBottom) ],
[Xb+ radiusb*cos(angleZ+twistZ), Yb+ radiusb*sin(angleZ+twistZ), Zb ],
[Xb+ radiusb*cos(angleZ+twistZ), Yb+ radiusb*sin(angleZ+twistZ), Zb+ radiusb*tipRatiob ],
[Xb , Yb , Zb+ radiusb*(tipRatiob+sin(threadAngleTop)) ],
[Xb , Yb , Zb ],
[Xb , Yb , Zb+ radiusb*sin(threadAngleBottom)] ];
polyTriangles=[
[ 0, 1, 6 ], [ 0, 6, 5 ], // tip of profile
[ 1, 7, 6 ], [ 1, 2, 7 ], // upper side of profile
[ 0, 5, 4 ], [ 4, 5, 9 ], // lower side of profile
[ 4, 9, 3 ], [ 9, 8, 3 ], [ 3, 8, 2 ], [ 8, 7, 2 ], // back of profile
[ 0, 4, 3 ], [ 0, 3, 2 ], [ 0, 2, 1 ], // a side of profile
[ 5, 8, 9 ], [ 5, 7, 8 ], [ 5, 6, 7 ] // b side of profile
];
polyhedron( polyPoints, polyTriangles );
}
module shaftPiece(Xa, Ya, Za, Xb, Yb, Zb, radiusa, radiusb, tipRatioa, tipRatiob, threadAngleTop, threadAngleBottom)
{
angleZ=atan2(Ya, Xa);
twistZ=atan2(Yb, Xb)-atan2(Ya, Xa);
threadAngleTop=15;
threadAngleBottom=-15;
shaftRatio=0.5;
polyPoints1=[
[Xa, Ya, Za + radiusa*sin(threadAngleBottom) ],
[Xa, Ya, Za + radiusa*(tipRatioa+sin(threadAngleTop)) ],
[Xa*shaftRatio, Ya*shaftRatio , Za + radiusa*(tipRatioa+sin(threadAngleTop)) ],
[Xa*shaftRatio , Ya*shaftRatio , Za ],
[Xa*shaftRatio , Ya*shaftRatio , Za + radiusa*sin(threadAngleBottom) ],
[Xb, Yb, Zb + radiusb*sin(threadAngleBottom) ],
[Xb, Yb, Zb + radiusb*(tipRatiob+sin(threadAngleTop)) ],
[Xb*shaftRatio , Yb*shaftRatio , Zb + radiusb*(tipRatiob+sin(threadAngleTop)) ],
[Xb*shaftRatio , Yb*shaftRatio , Zb ],
[Xb*shaftRatio , Yb*shaftRatio , Zb + radiusb*sin(threadAngleBottom) ] ];
polyTriangles1=[
[ 0, 1, 6 ], [ 0, 6, 5 ], // tip of profile
[ 1, 7, 6 ], [ 1, 2, 7 ], // upper side of profile
[ 0, 5, 4 ], [ 4, 5, 9 ], // lower side of profile
[ 3, 4, 9 ], [ 9, 8, 3 ], [ 2, 3, 8 ], [ 8, 7, 2 ], // back of profile
[ 0, 4, 3 ], [ 0, 3, 2 ], [ 0, 2, 1 ], // a side of profile
[ 5, 8, 9 ], [ 5, 7, 8 ], [ 5, 6, 7 ] // b side of profile
];
// this is the back of the raised part of the profile
polyhedron( polyPoints1, polyTriangles1 );
}
module trapezoidThread(
length=45, // axial length of the threaded rod
pitch=10, // axial distance from crest to crest
pitchRadius=10, // radial distance from center to mid-profile
threadHeightToPitch=0.5, // ratio between the height of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
profileRatio=0.5, // ratio between the lengths of the raised part of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
threadAngle=30, // angle between the two faces of the thread
// std value for Acme is 29 or for metric lead screw is 30
RH=true, // true/false the thread winds clockwise looking along shaft, i.e.follows the Right Hand Rule
clearance=0.1, // radial clearance, normalized to thread height
backlash=0.1, // axial clearance, normalized to pitch
stepsPerTurn=24 // number of slices to create per turn
)
{
numberTurns=length/pitch;
steps=stepsPerTurn*numberTurns;
trapezoidRatio= 2*profileRatio*(1-backlash);
function threadAngleTop(i)= threadAngle/2;
function threadAngleBottom(i)= -threadAngle/2;
function threadHeight(i)= pitch*threadHeightToPitch;
function pitchRadius(i)= pitchRadius;
function minorRadius(i)= pitchRadius(i)-0.5*threadHeight(i);
function X(i)= minorRadius(i)*cos(i*360*numberTurns);
function Y(i)= minorRadius(i)*sin(i*360*numberTurns);
function Z(i)= pitch*numberTurns*i;
function tip(i)= trapezoidRatio*(1-0.5*sin(threadAngleTop(i))+0.5*sin(threadAngleBottom(i)));
// this is the threaded rod
if (RH==true)
translate([0,0,-threadHeight(0)*sin(threadAngleBottom(0))])
for (i=[0:steps-1])
{
threadPiece(
Xa= X(i/steps),
Ya= Y(i/steps),
Za= Z(i/steps),
Xb= X((i+1)/steps),
Yb= Y((i+1)/steps),
Zb= Z((i+1)/steps),
radiusa= threadHeight(i/steps),
radiusb= threadHeight((i+1)/steps),
tipRatioa= tip(i/steps),
tipRatiob= tip((i+1)/steps),
threadAngleTop= threadAngleTop(i),
threadAngleBottom= threadAngleBottom(i)
);
shaftPiece(
Xa= X(i/steps),
Ya= Y(i/steps),
Za= Z(i/steps),
Xb= X((i+1)/steps),
Yb= Y((i+1)/steps),
Zb= Z((i+1)/steps),
radiusa= threadHeight(i/steps),
radiusb= threadHeight((i+1)/steps),
tipRatioa= tip(i/steps),
tipRatiob= tip((i+1)/steps),
threadAngleTop= threadAngleTop(i),
threadAngleBottom= threadAngleBottom(i)
);
}
if (RH==false)
translate([0,0,-threadHeight(0)*sin(threadAngleBottom(0))])
mirror([0,1,0])
for (i=[0:steps-1])
{
threadPiece(
Xa= X(i/steps),
Ya= Y(i/steps),
Za= Z(i/steps),
Xb= X((i+1)/steps),
Yb= Y((i+1)/steps),
Zb= Z((i+1)/steps),
radiusa= threadHeight(i/steps),
radiusb= threadHeight((i+1)/steps),
tipRatioa= tip(i/steps),
tipRatiob= tip((i+1)/steps),
threadAngleTop= threadAngleTop(i),
threadAngleBottom= threadAngleBottom(i)
);
shaftPiece(
Xa= X(i/steps),
Ya= Y(i/steps),
Za= Z(i/steps),
Xb= X((i+1)/steps),
Yb= Y((i+1)/steps),
Zb= Z((i+1)/steps),
radiusa= threadHeight(i/steps),
radiusb= threadHeight((i+1)/steps),
tipRatioa= tip(i/steps),
tipRatiob= tip((i+1)/steps),
threadAngleTop= threadAngleTop(i),
threadAngleBottom= threadAngleBottom(i)
);
}
rotate([0,0,180/stepsPerTurn])
cylinder(
h=length+threadHeight(1)*(tip(1)+sin( threadAngleTop(1) )-1*sin( threadAngleBottom(1) ) ),
r1=minorRadius(0)-clearance*threadHeight(0),
r2=minorRadius(0)-clearance*threadHeight(0),
$fn=stepsPerTurn
);
}
module trapezoidThreadNegativeSpace(
length=45, // axial length of the threaded rod
pitch=10, // axial distance from crest to crest
pitchRadius=10, // radial distance from center to mid-profile
threadHeightToPitch=0.5, // ratio between the height of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
profileRatio=0.5, // ratio between the lengths of the raised part of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
threadAngle=30, // angle between the two faces of the thread
// std value for Acme is 29 or for metric lead screw is 30
RH=true, // true/false the thread winds clockwise looking along shaft, i.e.follows the Right Hand Rule
countersunk=0, // depth of 45 degree chamfered entries, normalized to pitch
clearance=0.1, // radial clearance, normalized to thread height
backlash=0.1, // axial clearance, normalized to pitch
stepsPerTurn=24 // number of slices to create per turn
)
{
translate([0,0,-countersunk*pitch])
cylinder(
h=2*countersunk*pitch,
r2=pitchRadius+clearance*pitch+0.25*pitch,
r1=pitchRadius+clearance*pitch+0.25*pitch+2*countersunk*pitch,
$fn=24
);
translate([0,0,countersunk*pitch])
translate([0,0,-pitch])
trapezoidThread(
length=length+0.5*pitch, // axial length of the threaded rod
pitch=pitch, // axial distance from crest to crest
pitchRadius=pitchRadius+clearance*pitch, // radial distance from center to mid-profile
threadHeightToPitch=threadHeightToPitch, // ratio between the height of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
profileRatio=profileRatio, // ratio between the lengths of the raised part of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
threadAngle=threadAngle, // angle between the two faces of the thread
// std value for Acme is 29 or for metric lead screw is 30
RH=true, // true/false the thread winds clockwise looking along shaft
// i.e.follows Right Hand Rule
clearance=0, // radial clearance, normalized to thread height
backlash=-backlash, // axial clearance, normalized to pitch
stepsPerTurn=stepsPerTurn // number of slices to create per turn
);
translate([0,0,length-countersunk*pitch])
cylinder(
h=2*countersunk*pitch,
r1=pitchRadius+clearance*pitch+0.25*pitch,
r2=pitchRadius+clearance*pitch+0.25*pitch+2*countersunk*pitch,$fn=24,
$fn=24
);
}
module trapezoidNut(
length=45, // axial length of the threaded rod
radius=25, // outer radius of the nut
pitch=10, // axial distance from crest to crest
pitchRadius=10, // radial distance from center to mid-profile
threadHeightToPitch=0.5, // ratio between the height of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
profileRatio=0.5, // ratio between the lengths of the raised part of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
threadAngle=30, // angle between the two faces of the thread
// std value for Acme is 29 or for metric lead screw is 30
RH=true, // true/false the thread winds clockwise looking along shaft, i.e.follows the Right Hand Rule
countersunk=0, // depth of 45 degree chamfered entries, normalized to pitch
clearance=0.1, // radial clearance, normalized to thread height
backlash=0.1, // axial clearance, normalized to pitch
stepsPerTurn=24 // number of slices to create per turn
)
{
difference()
{
cylinder(
h=length,
r1=radius,
r2=radius,
$fn=6
);
trapezoidThreadNegativeSpace(
length=length, // axial length of the threaded rod
pitch=pitch, // axial distance from crest to crest
pitchRadius=pitchRadius, // radial distance from center to mid-profile
threadHeightToPitch=threadHeightToPitch, // ratio between the height of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
profileRatio=profileRatio, // ratio between the lengths of the raised part of the profile and the pitch
// std value for Acme or metric lead screw is 0.5
threadAngle=threadAngle, // angle between the two faces of the thread
// std value for Acme is 29 or for metric lead screw is 30
RH=true, // true/false the thread winds clockwise looking along shaft
// i.e.follows Right Hand Rule
countersunk=countersunk, // depth of 45 degree countersunk entries, normalized to pitch
clearance=clearance, // radial clearance, normalized to thread height
backlash=backlash, // axial clearance, normalized to pitch
stepsPerTurn=stepsPerTurn // number of slices to create per turn
);
}
}

View File

@ -2,6 +2,7 @@
$camera_mount = true;
$base = true;
$screen_mount = true;
$arm_base = true;
$arm_pieces = 1;
$screws = 1;
$nuts = 1;
@ -28,7 +29,7 @@ $steps_per_turn = $preview ? 8 : 128;
use <Thread_Library.scad>
if ($camera_mount) {
translate([0, -60, 0])
translate([-90, -40, 0])
camera_mount();
}
if ($base) {
@ -178,13 +179,17 @@ module nut_bumps() {
}
}
module screw() {
union() {
translate([0, 0, $screw_head_thickness - 4])
thread();
nut_head();
};
}
for (i = [0:1:$screws - 1]) {
translate([-$screw_head_diameter, i * ($screw_head_diameter + 5), 0])
union() {
translate([0, 0, $screw_head_thickness - 4])
thread();
nut_head();
};
screw();
}
for (i = [0:1:$nuts - 1]) {
@ -232,3 +237,34 @@ module thread_hole_punch(height=50) {
translate([0, 0, -0.1])
cylinder(d=13, h=height);
}
module arm_base() {
$width = 20;
$thickness = 3;
$screw_top = 24.46175;
$hole_height = $screw_top + $width / 2 + 1;
difference() {
union() {
translate([0, $thickness / 2, $hole_height])
rotate([90, 0, 0])
cylinder(d=$width, h=$thickness);
color("gray")
translate([-$width / 2, -$thickness / 2, $screw_top])
cube([$width, $thickness, $width / 2 + 1]);
};
translate([0, 2, $hole_height])
rotate([90, 0, 0])
thread_hole_punch();
}
color("brown")
translate([0, 0, $screw_top])
rotate([-180, 0, 0])
screw();
}
if ($arm_base) {
translate([-30, -40, 0])
arm_base();
}